ENGLISH STOP ALLOPHONES IN AETRICAL THEORY

John T. Jensen
Department of Linguistics
University of Ottawa Ottawa, Ontario K1N 6N5 Canada

- The foot, a prosodic unit containing one stressed syllable, is the domain for determining the allophones of stops in English. Aspiration is restricted to foot-initial position. Consonants are laxed within a foot after a nonconsonantal segment and lax voiceless stops are glottalized in syllable codas; lax alveolar stops are flapped syllable initially. Some revisions to the rules establishing feet are proposed. Because the metrical grid provides no constituents, it is not adequate for predicting the distribution of stop allophones in Eng1ish.

INTRODUCTION

In contemporary phonology there is general agreement that representations need to be enriched with prosodic organization, including such units as the syllable and the foot. This view contrasts sharply with the practice of early generative phonology [1], where phonological representations consisted entirely of strings of segments and boundaries. The original motivation for metrical theory was to offer a more natural account of stress systems [11], but it soon became apparent that prosodic organization also allows for the correct description of certain segmental processes as well. Aspiration of voiceless stops in Eng1ish, for example, occurs in a variety of disparate environments. Selkirk [15] lists word-initial position (Toronto), before a stressed vowel unless [s] precedes (hotel vs aston$i s h)$, before a sonorant plus a stressed vowel unless [s] precedes or [t] is followed by [1] (apply vs display, Atlantic). Such a process is difficult to describe in purely segmental terms, and indeed no systematic account of stop allophony appears in The Sound Pattern of English [1]. Selkirk observes correctly that aspiration occurs only in syllableinitial position, which partially accounts for these observations. In order to account for the nonaspiration of the underlined stops in words like happy, hefty, Selkirk proposes language-particular resyllabification rules that attract consonants leftward out of stressless syllables, giving happ. y, heft.y, thereby removing these stops from the domain of aspiration. While I find these resyllabifications counterintuitive, there is an empirical argument against this analysis. Selkirk's resyllabification rules are subject to a structure-preservation principle that requires derived syllables to conform to the canonical syllable patterns of the language. In a word like At. kins , resyllabification to ${ }^{*}$ Atk. ins is impossible, since English syllables never end in

$$
\therefore
$$

-tk. This predicts that [k] of Atkins should aspirate which it does not, any more than the [t] of actor, where act.or would be a possible resyllabification.

A second syllable-based approach to English stop allophones is that of Kahn [8], which is couched in terms of autosegmental phonology. Instead of resyllabification, Kahn allows consonants to be ambisyllabic, i.e., part of both the preceding and following syllables. This would be the case of [p] in happy and [t] in hefty, for example. Kahn's rule aspirates voiceless stops that are syllable initial but not syllable final (i.e., not ambisyllabic) and thus achieves the same effect as Selkirk, and runs into the same difficulty with Atkins. Since [k] here can't be ambisyllabic, he wrongly predicts that it should aspirate. (In fact, he claims that it does aspirate in slow speech, but I find this possible only in very careful speech where both syllables are stressed.)

Kiparsky [9] was the first to propose that the stress feet of Liberman and Prince [11] could also be considered the domain of certain segmental processes. Instead of resyllabification or ambisyllabification, Kiparsky proposed rule (1) (modified).
(1) $\mathrm{C} \rightarrow$ [-tense] / $\ldots[$-cons $]$ \qquad within a foot

Kiparsky restricts aspiration to tense voiceless stops at the beginning of a syllable, thus accounting for happy. But Kiparsky predicts aspiration on the second syllables of hefty, Atkins, where the stops [t] and [k] are unaffected by rule (1), since they are preceded by [+consonantal] [f] and [t] respectively. Hammond [4] notices such problems with the foot-based analysis, and advocates a return to Kahn's ambisyllabic approach. I propose to retain the foot-based approach, but to restrict aspiration to foot-initial position. Some modification of Kiparsky's system is needed anyway. Working within the original metrical framework [11], Kiparsky retained the feature [\pm stress] and with it the possibility of stressless feet. He analyzes potato as two feet, the first unstressed, $\left[{ }_{F}\right.$ pol [${ }_{F}$ tato], predicting aspiration on the foot-initial [p] and [t] and flapping (via laxing) of the second [t]. Since then, metrical theory has rejected the feature [stress], holding that stress is the property of being. the strongest syllable in a foot [14]. If [po] of potato is not a foot, and aspiration is limited to foot-initial position, how does the [p] come to be aspirated? Hayes [5, 6] proposes that stray syllables (i.e. those not associated with any foot) are adjoined to an adjacent foot. If we assume that ad-
junction creates nested feet, we get the represen-
tation in (2) (where w=weak, $s=$ strong, $\mathrm{F}=\mathrm{foot}$; sand ation in (2) (where w=weak, s=strong, $\mathrm{F}=$ foot; s-and
(2)

$\overbrace{\substack{\text { w } \\ \text { po } \\ \text { ta }}}^{\mathcal{F}}$

In (2), both [p] and the first [t] are foot initial, and so get aspirated, while the second [t] laxes and
laps, as in Kiparsky's treatment. This captures the essence of Kiparsky's proposal, and resolve
Kiparsky's problem with Atkins and hefty. Xparsky's problem with Atkins and hefty.
Subsequent studies have confirmed the
foot in segmental phonology as well as stress of the ems. Prince [12] states rules for as gradation and over1ength in Estonian partly in terms of foot
structure. Similarly, Hayes [7] discusses certain segmental processes in Yidiny, an Australian language, in terms of foot conditioning, thereby obviting the necessity for phonological rules to refe
the odd-numbered syllables tn a word. Even for tress systems, constituency is necessary. Halle and Verenaun [3] cite a number of studies showing many languages results in a stress shift to an adjacent syllable within the foot.
Iew the properties of this paper, I will first reific the properties of syleables, propose some mod-
fications to Hayes's rules of foot construction, hen show the role of the foot in Eng1ish stop a1
yllables
The acoustic record provides no direct evidence of syllables and their boundaries. The syllable is an ore insightful statement of certain phonological processes. Among competing approaches, we assume
the metrical representation of Kiparsky hich merrical representation of Kiparsky [9], in
whllable has the same type of s-w label
(3)

In this representation, sister constituents are re quired to observe the sonority hierarchy, according to which segments are ordered (from weakest to
strongest) as stops, fricatives, nasals, $1, r$, trongest) as stops, fricatives, nasais,
glides, vowels. In addition, English guage-specific constraints on onsets and rimes. For example, a syllable cannot begin with a sequence of two stops (including nasals), and the rime is 1 imit
ed to the sequence $V([+$ sonorant $]$) (C) ($[$ cooronall $]$) where the 'coronal' position may exceptionally co ain [st] or [se] as in next, sixth. An additional s], [z], [t], or [d] may follow if it is inflec-
tiona1, eg. sixths. ${ }^{\text {Even }}$ though contrary to the sonority hierarchy, [s] plus voiceless stop can oc
cur in the onset, and also the sequence $[\mathrm{s}]$ plus

The guestion of divididng between syllables. viding between syllables is At.kins, which can only be syllabified as shown. Kiparsky proposed that, in English, the onset is maximized when two or more divisions are posstbie at
the boundary between two syllables. In this fespect the boundary between two syllables. In this respect
English contrasts with Finni.ish and Estonian, where the coda is maximized, and where, in generai, the onset is limited to a single consonant. This raises
an interesting question: what happens to $\mathrm{VsT}(\mathrm{R}) \mathrm{V}$ an interesting question: what happens to VsT(R)V glide)? The sonority hierarchy predicts Vs.T(R)V; he onset maximization principle predicts V. $\mathrm{ST}(\mathrm{R})$ experimentally. He measured the degree of aspiration tn words iike despise and comparee it to that of words like pin (aspirated) and spin (unaspirat-
d). Measurements revealed that the stops in word ike despise are normally unaspirated, supporting the syllabification V.ST(R)V. The only exception ere in words that contained "a prefix with -s fol dary, e.g. miscalculate, discourteous, "t where the stops are aspirated, thus supporting a sy11able di Vs.T(R)V in these words.
In a sense, or course, this argument is circular. The syllable boundary is inferred from the degree of aspiration on the stop, while the rule for aspira
tion is assumed to affect only syllable-initial tiaps. (The stops in question are also foot initial, and so consistent with our hypothesis also.)
However, this conclusion is inderenter by the stress pattern of these words. The prefixes $i s$ - and dis-exhibit secondary stress, and we might expect to find similar effects from a preceding norpheme. In Davidsen-Nielsen's material, gètatation nd fastidious have a somewhat greater average deree of aspiration (3.0 and 3.09 asec respectively) spectively. To test this further, I recorded two spakers of North American English in words containing 3 -stop clusters, both with and without stress on
the preceding syllable. Results were analyzed using a Mingograf 804 connected to a Kay Elemetrics Visipitch 6087 and also with a Kay Kilemetrics Sonagrap

Infèstátion	JJ	
èlastİcity	${ }_{5}$	2.5
plasticity	3	2
pestIfferous	2	2
ostensible	2	2
MEAN	2.8	2.3
askánce	1	
órchestra	2	2
astón 1 sh	1.5	1
pedestal	1	2
sustain	${ }_{1}^{1.3}$	1.5

hile these results are not conclusive, there is somewhat more aspiration in words, where a secondary preceding syllable is unstressed. This supports the
pyllabification Vs. TR $)$ for the words of Table $1(\mathrm{~b})$ feet and aspiration

For the core system of Eng1ish stress, Hayes [5] proposed left-dominant maximally binary feet con(i.e. with three syllables) can arise only by adjoining a stray syllable to a binary foot. Syllales become stray either by being made extrametrical or as a result of destressing. Before foot as-
signment, the f1naI consonant of a word, the final suffix of an adjective, and the fina1 syllable of noun are extrametrical. The rithtmost foot may be
binary only if its second syllable ends in a short inary only if its second syllable ends in a short
(lax) vowel. Conversely, a monosyllabic foot must contatn a long vowel, a diphthong, or at least one
Enal consonant. This accounts for the famile inal consonant. This accounts for the familiar ob
 end in a checked vowl; i.e. bee (and actual) words, while *bi
$[b t]$ are possible
[bi] is an tmpossible word.. Prince 12$]$ claims tha bl] is an impossible word.. Prince [12] claims that Estonian is subject to the same constraint on pos-
stble feet. Other languages, e.g. French and Hungarian, are not restricted In this way. In English he only exception to this generalization is words
ith an initial monosyllabic foot of the proscribed ith an initial monosyllabic foot of the proscribed
orm followed by a well-formed monosyllabic foot, such as essay $[1$ a sej j], Hanooi $[$, he ho noj]. Hayes pro-
posed several destressing rules, but we will be conposed several destressing rules, but we will be con-
cerned with only one: Poststress destressing, which removes a binary foot whose first syllable is open
and which inmediately follows a monosilabic foet nd which immedfately follows a monosy1labic foot layes appeals to this rule
words like abracadabra (4).

$$
\overbrace{\mathrm{Bra} \text { ca da bra }}^{\mathrm{F}} \overbrace{\begin{array}{c}
\text { (stray syliable } \\
\text { adjunction) }
\end{array}}^{\text {F }}
$$

Speakers find the division (4c) counterintuittve.
To test this, I asked a group of 28 native Englishpeaking first-year undergraduate 1 inguistics stuents to divide words of this type "into two parts, according to the pronunciation." None of the subects knew the purpose of the test beforehand. Conrol words were inserted into the list to prevent
extraneous strategies from being used. Subjects had a printed 11 strat of words and were asked to indicate a single division between letters in each as they
were pronounced by the author, with only a short inere pronounced by the author, with on1y a short in table 2 .
h two unstressed syllables flanked by two stressed syllables, the preferred pattern seems to
be to join the first unstressed syllable to the pre eding foot and the second to the following foot, as ong as the second unstressed syllable is open.
This produces the intuitively correct structure (5) from (4b).

$$
\begin{aligned}
& \text { (stressing and (Poststress }
\end{aligned}
$$

	$1{ }^{3.6 \%}$	2382.17		
Navratilo	517.8%	22 78.6\%	3.6\%	0
Winnepesaukee	.6\%	1450.0%	11	
Tippecanoe	3\%	2485.7%		0
Luxipallila	310.7%	22 78.6\%		
Nebuchadnezz	7.1\%	517.8%	1760.7%	
11 m	13.6%	1760.		

Table 2. Division of words into two parts. Number (and percentage) of responses. Column headings: $2 /$ after the second, $3 /$ after the third. Other
(5)
a bra ca da br
a bra ca da br

If the second unfooted syllable is closed, it joins the foot on the left: 60.7% of subjects preferred
the division [Nebuchad] [nezzar]. Prince suggests that this is because chadnezzar (with the first syllable unstressed) is not a possible word type: in
our terms, a possible foot [13]. On the other hand, Kizimanjaro may go both ways, [Kili][manjaro] or [Kiliman][jaro], since both divisions into two parts
give two possible phonological words, or feet. grince uses facts such as these to argue again the foot as a legitimate phonological unit. Because the metrical theory of stress uses only a small theory allows in principle, he proposes eliminating the trees and displaying relative prominence in terms of a grid, in which column height correlates
with greater prominence. Such a representation has no constituents, and thus no way of capturing the segmental processes that we have seen depend on these constituents. Prince notes the virtually
obligatory aspiration of the [t$]$ of Navratilova, obilgatory aspiration of the [t] of Navratilova, un-
expected if it is metrically structured as in (4c). However, rather than discard foot theory, the answer
lies in modifying it so that it will produce structures like (5), where aspiration of [k] (abracadabra) and [t] (NavratiIova) is expected, under the hy-
pothesis that aspiration of tense voiceless sto pothesis that aspiration of tense voiceless stops
As with syllabification, we sought
verification of the proposed divistion into feet (5) Table 3 gives the duration of the release stage of
the stops at the beginning of the third syllables the stops at the beginning of the third syllables
of the words of Table 2 (except for Kilimanjaro, which has no stop in that position). Speakers and

These results are consistent with the hypothesis that (5) represents the correct foot structure, on the assumption that only foot-initial voiceless stops are aspirated.

GLOTTALIZATION

Glottalization of stops is manifested differently in various English dialects. Cockney is notorious for the extent to which glottalization appears between vowels. In RP and North American dialects, glottalization is restricted to voiceless stops in syllable codas laxed by rule (1). Examples are ootave, atlas, at Lynne's. The only case where voiceless stops are glottalized in syllable-initial position is before syllabic [n]; as in kitten. Nonrhotic $\ddot{\text { speakers (e }}$. g. RP) can also have glottalized [t] in words like pattern, where r-loss makes the [n] syllabic; North American speakers, with syllabic [r] in such words, have the expected flap. It is notable that Cockney speakers use glottalized stops (or [?]) where North American speakers have the flap. In my analysis, this results from the lack of the flapping rule in British dialects, coupled with the extension of the glottalization rule to lax voiceless stops in all positions, and is especially noteworthy when it affects labial and velar stops, as in [pəj?ə] 'paper'.

In Selkirk's account, both flapped alveolars and glottalized stops are in syllable-final position as a result of her resyllabification rule. She therefore resorts to a feature [\pm release], claiming that alveolar stops are flapped in syllable-final position when they are released, generally before a vowel. Unreleased voiceless stops are glottalized. This runs into two difficulties, only one of which she discusses. Phrases like get off can only be pronounced [gerof] by her account, with a flap. Kahn notes an alternate pronunciation [get'of] or [ge?of], both impossible under Selkirk's analysis, since stops are obligatorily released before vowels and thus never glottalized there. She proposes that [?] is inserted before certain initial vowels under emphasis. This makes [t] unreleased, since it is followed by a nonvowel. While this works for the North American dialects she is discussing, it won't account for the Cockney facts just mentioned. The medial stop in paper is followed by a vowel, and there is no possibility of inserting [?] under emphasis. In any case, nonrelease is not generally associated with glottalization, as many languages have phonemic released glottalized stops (e.g. Georgian). We conclude that it is more natural to describe the difference between glottalized and flapped allophones in English in terms of syllable position and dispense with the feature [release].

FLAPPING

In North American English, but not in most forms of British English, alveolar stops [t], [d], [n] are flapped within words before stressless vowels, and often between words regardless of stress. So, the second [t] of potato is flapped, as is the [t] in met Ann, although this [t] can also be glottalized. The difference depends on the syllabic status of [t] here. Kiparsky proposes a rule that flaps alveolar stops in syllable-initial position if they are lax (by rule (1)). Since [t] in met Ann is lax, it will flap only if it is resyllabified with the following
vowel; otherwise it is glottalized. We assume that resyllabification is optional at word boundaries. Notice that, in phrases, it doesn't matter . that the following vowel is stressed. What matters is that the [t] of met is laxed within its foot before it is syntactically concatenated with Ann.

SUMMARY

Laxing (1): Consonants become lax after a nonconsonantal segment within a foot.

Aspiration: Tense voiceless stops are aspirated at the beginning of a foot.

Glottalization: Lax voiceless stops are glottalized in the syllable coda. (Generalized in Cockney to all positions).

Flapping: Lax alveolar stops (including [n] are flapped in the syllable onset (North American only).

ACKNOWLEDGEMENTS

I wish to thank Melanie Lukach, Régis Foré, Margaret Stong-Jensen, Helen Goodluck, and Phil Ilauptman and his Introduction to Language class for help in preparing this paper. All errors are my own.

REFERENCES

[1] N. Chomsky, M. Halle, The Sound Pattern of English, Harper and Row, 1968.
[2] N. Davidsen-Nielsen, "Syllabification in English words with medial $s p$, $s t$, $s k$, "Journal of Phonetics 2, 15-45, 1974.
[3] M. Halle, J.-R. Vergnaud, "Stress and the cycle," Linguistic Inquiry 18, 45-84, 1987.
[4] M. Hammond, "Foot domain rules and metrical 10cality," West Coast Conference on Formal Linguistics 1, 207-218, 1982.
[5] B. Hayes, A Metrical Theory of Stress Rules, MIT dissertation (IULC), I 981.
[6] B. Hayes, "Extrametricality and English stress," Linguistic Inquiry 13, 227-276, 1982.
[7] B. Hayes, "Metrical structure as the organizing principle of Yidin' phonology," The Structure of Phonological Representations (Part I) 97-110, Foris, 1982.
[8] D. Kahn, Syilable-based Generalizations in English Phonology, MIT dissertation (IULC), 1976.
[9] P. Kiparsky, "Metrical structure assignment is cyclic," Linguistic Inquiry 10, 421-441, 1979.
[10] P. Kiparsky, "From cyclic phonology to lexical phonology," The Structure of Phonological Representations (Part I) 131-175, Foris, 1982.
[11] M. Liberman, A. Prince, "On stress and linguistic rhythm," Linguistic Inquiry 8, 249-336, 1977.
12] A. Prince, "A metrical theory for Estonian quantity," Linguistic Inquiry 11, 511-562, 1980.
13] A. Prince, "Relating to the grid," Linguistic Inquiry 14, 19-100, 1983.
[14] E. Selkirk, "The role of prosodic categories In English word stress," Linguistic Inquiry 11, 563-605, 1980.
[15] E. Selkirk, "The syllable," The Structure of Phonological Representations (Part II), 337-
383, 1982.

