AOOUSITC STUDIES OF VOWEL REDUCTION IN SWEDISH

LENNART NORD

Department of Speech Cormunication and Music Acoustics Poyal Institute of Technology (KTH), Box 70014 S-100 44, Stockholm, Sweden

ABSTRACT

An acoustic analysis has been performed on a number of Swedish vowels, spoken in varying context. A complementary matching experiment using synthetic speech was made to see whether the analyzed differences in vowel quality were perceptually significant. Subjects had to adjust the vowel quality in words produced by an interactive rule-synthesis computer program. The purpose with these investigations was to describe and quantify the relations between vowel quality and influences of stress and position.

INTRODUCTION

In this study we focus on the concept of vowel reduction, here taken to mean the reduction in phonetic contrast between vowels. For a number of languages it has been found that the vowel space is reduced as the level of stress placed upon the vowels is reduced. Acoustic studies by Tiffany $/ 1 /$. Shearme \& Holmes $/ 2 /$, Delattre $/ 3 /$ Stålhammar, Karlsson \& Fant /4/, Koopmans-van Beinum /5/ and others have shown that vowels in unstressed positions are displaced towards a more central (neutral) position in the vowel plane. A number of factors contribute to obscure vowel color in speech, see for example the study by Delattre (ref. /3/) who lists factors such as stress, rhythm, duration and contextual assimilation.

PRESENT STUDY

The aim with the present study was to study in detail some of the factors that contribute to vowel reduction in Swedish. We need a better understanding of these problems to improve the quality of synthet ic speech, a typical impression being that synthesizers often over-articulate unstressed syllables.

TEST HYPOIHESIS

The phonetic context that will influence the formant pattern of a given vowel in a two-syllable word is: i) surrounding consonants, ii) the neutral position of the vocal tract, and iii) the second syllable, especially its vowel nucleus.

We focus on one aspect of the reduction phenomenon; is there a difference in formant pattern between two vowel samples of the same duration, one stressed and the other unstressed but of equal
duration due to final lengthening? If there is a difference, could it be accounted for in terms of varying degrees of contextual influence?

Four types of two-syllable words were chosen with the following structure: The lexical stress on the initial or the final syllable, with dental consonants surrounding the analyzed vowel: CVC'S2, 'SlCVC, 'CVCS2 and Sl'CVC, with $V=$ the short Swedish vowels /a,i,e,u/ and $C-C=/ s-1,1-s$, ss/, S1 and S2 =first and second syllable. This means that each analyzed vowel was placed either in initial or final position or in a stressed or unstressed syllable in an invariant consonantal frame. The words were read in isolation with no
carrier phrase.

MATCHING EXPERIMENT

We were also interested in testing the perceptual significance of the results from the acoustic analysis by means of an interactive matching paradigm. That is, how reliably would subjects be able to adjust FlF2-values for given synthetic words in order to match to some internal criteria? A number of phonetic details can be tested with this type of interactive matching paradigm, using the specially developed rule synthesis program (Carlson \& Granström, $/ 6 /$). As long as the quality of the speech is acceptable to the subjects, segmental as well as suprasegmental cues can be evaluated. One could, for instance, let the subjects manipulate duration, pitch, intensity, etc. Few matching experiments of this type have been reported /7//8/ on segment duration. öster /9/ also used the Carlson \& Granström rule-synthesis program to systematically map typical features of the speech of deaf children.

FXPERIMENT: ANALYSIS OF NATURAL, SPEECH

A high-quality recording was made of four Swedish male speakers from the Stockholm area reading twice a list of 38 lexically meaningful words with no carrier phrase in an anechoic chamber. The words contained the short vowels /a,i,e,u/ and were constructed as described above. Formant frequencies and vowel durations were measured manually. The sample point for the formant measure was chosen by means of broad-band spectrograms in the midale of the vowel segment. The actual measurements were made from narrow-band spectral sections. In a few cases of uncertainty, the measurements were adjusted after comparison with selec-
tive inverse filtering which was used to display
one single formant ringing at a time and enable one single formant ringing at a time and enable atic comparisons with measurements on symthetic vowels, we est imated the accur
measurements to be $+/-20 \mathrm{~Hz}$.
As it was impossible to always find content words of the right format, a few proper names wer used. Also the demand on invariant cuc-sylable
forced us to modify the consonantal frame for the ifferent vowels, but still only use dentals. C-C ere for the most words $/ \mathrm{s}-1,1-\mathrm{s}, \mathrm{s}-\mathrm{s} /$. Accord ngly, a comparison across vowels has to be taken
nto account the difference in consonantal coariculations that occurred.

RESITTS AND DISCUSSION. VOWEL ANATMSIS
To find out the sensitivity of formant perturbat ions to changes in word material, a set o
words were tried with variation of consonanta frame: $/ \mathrm{s}, 1, d, t /$ as well as a change of vowel frane: in the other syllable. The spread turned
nuclei in
out to be small and the tendencies the same. The to be small and the tendencies the same,
Therefore, it was decided to consider the influTherefore, it was decided to consider the influ-
ence of the different dental consonantal frame negligible and base mean values of the entire wor By placing the vowel in stressed or unstressed By placing the vowel in stressed or unstressed
initial or final cVC-syllables, we obtained vowe
durations ranging from 70 to 190 mec. durations ranging from 70 to 190 mesec. Comparin vowels in final unstressed syllahles with vowels
in initial stressed syllables, we were also able

Fig. 1. Results from the analysis of real speech. Hean . Results from the analysis of real speech,
short Swedish vowelst and second formant of the short Swelish vowels $/ a, i, e, 4 / . \quad 4$ male speakers,
$8-40$ samples/point. initial final (position) stressed
unstressed
(syllable)
\qquad
to study the influence of stress in those cases here the duration did not differ between vowels i.e., word categories duration values around 125 msec . In Fig. 1 the mean values of first and second formants are shown. As can be seen, the unstresse nitial and final vowels are displaced away fron the target values of the stressed vowels. For the
short $/ \mathrm{e} /$ and $/ \mathrm{i} /$, it is evident that the un tressed initial samples (o) are displaced differ ently compared to the unstressed final samples (H)
as the arrows indicate. This difference could be expressed as a difference in coarticulation: the unstressed vowels coarticulate with the consonantal frame, i.e., they move towards the dental while the unstressed final vowels are reduce towards a more neutral place in the vowel plane
$500 / 1500 \mathrm{~Hz}$. Formant values for the initial as the finally lengthened unstressed vowels (H) are thus not identical. Duration is thus not th sole determinant of the degree of reduction. Thes endencies are not as evidentar all the vowels, target, the consonantal locus and the neutral vowel. For the /a/ vowel it is thus not possibl tation or by coarticulation as both effects wil lower F1 and raise F2.
Another way of showing this effect for $/ e /$ is Fig. 2. As can be seen, the duration alone canno predict the formant value. The stressed initia vowel (+) has approximately the same duratio value as the unstressed final vowel (\ddagger), but

Fig. 2. Second formant value as a function of owel duration for the short vowel /e/. Each oint represents the mean value of the two read$\begin{aligned} & \text { speaker. } \\ & \text { initial } \text { final (position) }\end{aligned}$ stressed
unstressed
(syllable)
on the syllable context (in terms of stress and
position). The inten
on was to maintain an ind frame for each vowel (for the four-word catego-
ries). Due to the demands for ries). Due to the demands for meaningful words,
the consonantal frame differs somewhat different vowels, but still bers somewhat for the
or $/ \mathrm{a} /$ and $/ \mathrm{e} /:$
being dental. Thus, for $/ \mathrm{a} / \mathrm{and} / \mathrm{e} /: / \mathrm{s}-\mathrm{l} /$. for $/ \mathrm{i} / \mathrm{f}$ dental. Thus, $/ 1-\mathrm{s} /$ and for
$/ \mathrm{u} / \mathrm{s} / \mathrm{s}-\mathrm{s} /$. This causes the differences duration. / $u /$ and $/ i /$ become shorter than $/ a /$ and e/ as they are followed by a voiceless consonant. One might also wonder whether all consonant.
sehave in the same way. An analys performances for the four speakers shows individual tendencies vary. Two of the speakers, one of which was used in an earlier study show clear
tendencies $/ 10 /$. The other ter tendencies $/ 10 /$. The other two speakers perform a
bit differently. and the other has small vowel areas in general. speakers, probably due appreciably between the

MATCHING EXPERIMENT

As a complement to the acoustic analysis, interactive rule-synthesis program (see ref. $/ 6 /$)
ncluding an OVE III formant synthesizer, was use in a matching experiment. The task of the subject ist of previously analyzed material, and by mean of a joystick connected to the compunder, adjust make it sound as natural at a time in a word to active method has been used earlier for duratio studies (ref. /8/). For this experimental set-up the x - and y-coordinates of the joystick were symthetic vowel that was tested. The quality of the vowel could thus, instantly, be chanity of
moving a cursor around in a grid batt moving a cursor around in a grid pattern on the values were used for each test word in order to avoid learning effects. A minor modification of
the duration rules made the the duration rules made the unstressed finally
lengthened vowel of equal duration as the initially stressed vowel.
able information about the percenible to get valuof acoustic parameters. Here perceptual importance improve the synthetic. speech with regard to the trying to optimize is especially interesting trying to optimize the setting of the symthesis The test was run in the following way: subject had a list of test words with one vow: The in
each word marked. The task was to listen to synthet ic version of one word at a time and adjust the phonetic quality of the marked vowel to sound instructed on the task of moving the wore first listen to the result. The test demanded some so it in terms of concentration by the subjects so it was felt necessary to limit the word list.
The same type of test as for the reading list was made to evpe of test as for the reading list was The variation in fram, comparing $/ \mathrm{s}-1 /$, $/ 1-\mathrm{s} /$ etc. tically with the mitching did not change systemnean values are pooled over the entire word list.

Preliminary tests with phonetically untraine ubjects showed that they could manage the tas quite well. However, in order to keep the variabi phonetically non-naive subjects.
stored by the formant values were automaticall diately after eacham and could be analyzed immeEfour speakerjects participated, among them the four speakers in the previous test. Each subject performed two matchings on a list of 25 words: one The amount of words were limited to a selected part of the reading list as the test was rather
exhausting.

MATCHING EXPERIMENT. RESULTS AND DISCuSSIon
The results from the matching experiment are shown in Fig. 3 where the mean values of the first are smaller tormants are plotted. The vowel areas Fig. 1, but the same tendencies can be seen, although to a lesser extent. Thus, the unstressed
final $/ \mathrm{e} /$ is matched differently than the stressed one, the former moving towards schwa, the

F1 (Hz)
Fig. 3. Results from the matching test with synthetic words. Mean values of first and second
formant of the short Swedish vowels surmant of the short Swedish vo
subjects, $16-48$ matchings/point
stressed
unstressed
$\stackrel{\text { * }}{*}$

A number of reasons can account for the discrepancy bet ween the two tests. The synthet ic
quality will probably affect the matchings depend-
ing on the subject's acceptance of the voice quality. As only F1 and F2 were manipulated while higher formants were kept constant, especially the F2 of high, front vowels will differ from F2 of natural vowels. The matching session was experienced as a difficult but manageable task by the subjects. Also the spread between subjects was small. In conclusion, the method seems to be useful for this type of optimizations.

SUMMARY

The first and second formants were measured for four Swedish short vowels /a,i,e,u/ in varying context, the purpose being to investigate factors of vowel reduction, such as stress, position and duration. The vowels were placed in stressed and unstressed, initial and final "syllables in twosyllable words.

The result supports the findings in the previous pilot study by Nord (see ref. /10/). A tentative explanation to the distribution of formant data is that the perturbations are caused by contextual influence of surrounding consonants and in unstressed final position by a neutralization gesture, which in this word list material with no carrier phrase also belongs to the immediate context. If we do not reach for a phonological rule to explain the observations, specifically regarding the unstressed short /e/ in final syllable position, we could formulate the vowel reduction process in the following manner: irrespective of their duration, unstressed vowels coarticulate strongly with context: in non-final syllable position with surrounding phonemes and in final syllable position with a neutral position corresponding to a centralized schwa vowel. These tendencies were seen in varying degrees, probably depending on the relative locations of vowel targets, schwa and consonantal loci.

A supplementary study was performed using synthetic speech in order to evaluate the perceptual importance of formant perturbations in the realization of vowels in varying contexts. During the experiment, subjects were exposed to synthetic words of the same structure as in the previous experiment. The task was to adjust the quality of one vowel in each word by means of a joystick, connected to the rule-synthesis program, controlling the first and second formant of that particular vowel.

The results from this test were compared with the previous analysis. The same tendencies were seen, although to a lesser extent. This was probably due to the design of the experiment. As only two formants were manipulated, there were some difficulties in finding suitable vowel qualities during the matching procedure. Also the synthetic quality of the stimuli might have had some influence on the subjects matching strategies. Although the task was rather difficult, subjects performed well with small deviations. One conclusion from this test is that the matching procedure using synthetic stimuli is an efficient way of evaluating perceptual cues and testing theories of speech dynamics.

REFERENCES

/l/ W.R. Tiffany, "Non-random sources of variation in vowel quality", J. Speech Hearing Res. 2, pp. 305-317, 1959.
/2/ J.N. Shearme, J.N. Holmes, "An experimental study of the classification of sounds in continuous speech according to their distribution in the Formant 1 - Formant 2 plane", pp. 234-240 in A. Sovi järvi \& P. Aalto, eds., Proc. 4th Int.Congr.Phon.Sci., Mouton \& Co., The Hague, 1962
/3/ P. Delattre, "The general phonetic characteristics of languages. An acoustic and articulatory study of vowel reduction in four languages", Final Report, Univ. of California, Santa Barbara, CA, USA. 1969
/4/ U. Stålhammar, I. Karlsson, G. Fant, "Contextual effects on vowel nuclei", STL-QPSR 4/1973, pp. 1-18 (KTH, Stockholm).
/5/ F.J. Koopmans-van Beinum, "Vowel contrast reduction. An acoustic and perceptual study of Dutch vowels in various speech conditions", Doct. thesis, Univ. of Amsterdam, 1980
/6/ R. Carlson, B. Granström, "A text-to-speech system based entirely on rules", pp. 686-689 in Conf. Record, 1976 IEEE Int.Conf. on Acoustics, Speech and Signal Processing, April, Philadelphia, PA, 1976
/7/ S.B. Nooteboom, "Production and perception of vowel duration. A study of durational properties of vowels in Dutch", Doct. thesis, Univ. of Utrecht, 1972.
/8/ R. Carlson, B. Granström, "Perception of segmental duration", STL-QPSR 1/1975, (KTH, Stockholm), pp. 1-16.
/9/ A-M. Öster, "The use of a synthesis-by-rule system in a study of deaf speech", STE-QPSR 1/1985 pp. 95-107 (KTH, Stockholm).
/10/ L. Nord, "Vowel reduction - centralization or contextual assimilation?", pp. 149-154 in G. Fant, ed., Speech Communication, Vol. 2, Almqvist \& Wiksell Int., Stockholm. 1975

