SPEARER-INDEPENDENT SPEECB-RECOGNITION USING ALLOPHONES

Knstitut de ${ }^{\text {Ka }}$ Cormunication Parlée
Institut National Polytechnique de Grenoble 46, Avenue Félix Viallet
38000 GRENOBLE, FRANCE.

ABSTRACT

This study concerns the determination of the allophones that are necessary for achieving a good recognition of the French numbers by a speech recognition system based on a Markov modelling
approach. The allophones have been distinguished, approach. The allophones have been distinguished,
for the vowels, by the formant transitions at the "onset" and at the "offset", and for the consonants, by their phonetical characterization.

For this specific application, using an aver-
of 2 allophones by phoneme and a few "clusage of 2 allophones by phoneme and a few "clusters", we achieved 94.9\% correct recognition rate on the whole numbers, for 13 speakers that were
not in the training set.

INTRODUCTION

A speaker-independent speech-recognition sysem has io deal with all the possible acoustical variations result from various speakers, different possible pronunciations and corticulation ffects. The recognition system we used [1], part of these variations approach, can handle training procedure. However, the basic units, used to describe the words (usually phonemes), have different acoustical realizations depending on the context. If one uses a specific acoustical number of necessary models would be pretty large. But, for any phoneme, several contexts may have nearly the same influence on its acoustical reali ation. So a good tradeoff, between accuracy and or a given is to use different acoustical models nce is different enough.

That is the reasons
lophones as each of them corresponds tudy the ticular acoustical realization. It is worthwile entioning that this study concerns only a pecific application, namely the French numbers between 0 and 999 , and thus has no pretention to phones. Nevertheless, the set of allophones determined in this study may be extended as needed to fit a new vocabulary. The French numbers us of the French language. The of the consonants limited vocabulary restrict the number of contexts for each phoneme, thus, we were able to conduct ull study of the different contexts for this pecific application

After a description of the data base, this paper details the different realizations of th
phonemes. For the vowels, we used mainly the

D. Jouver

Centre National d'Etudes des Télécommunications Route de Trégastel
2300 LANIION, FRANC
transition of the formants, and for the consonants, their phonetical characterizations. end the paper by an application of the allophone
in a speech recognition system.

data base

The data base contains about 3000 French numbers between 0 and 999 . They were recorde the speakers have a "standard" pronunciation except one having a strong regional accent.

The table lists the different phonemes of the data base. For typographical reasons we denot the phonemes by one or two ascii characters, and we specified here the standard phonetical meaning when different from the notation used.

Vowels	Oral	i, ei(e), ai(ε), a, $o(\partial)$, au(б), ou(u), $\mathrm{eu}(\boldsymbol{\varnothing})$, oe($\boldsymbol{\alpha}), \mathrm{e}(\boldsymbol{\partial})$.
	Nasal	$\mathrm{an}(\tilde{\mathfrak{a}})$, in (\tilde{E}), un($(\tilde{\mathfrak{\alpha}})$, on($(\tilde{\mathcal{F}})$
Consonants	Plosive	d, t, k.
	Fricative	v, z, f, s.
	Liquid	
	Nasal Semivowel	n.
	Semivowel	w, $y(y)$.

This study, concerning the determination of the allophones, was conducted using the spectrograms of the data in association with the pitch and the waveform.

VOUELS ALLOPHONES

One of the main acoustical realizations the context influence on the vowel is the transi tion of the formants at the "onset" and at the "offset". For practical reasons, related to the we will treat separately the consonantic influence, the pause influence, the possible devoicing and the case of adjacent vowels.

Consonantic Influence

From the locus theory 12,31 , which explains the transition of the formants at the "onset" or the "offset" of the vowels by the point of articd 6 classes for the consonants. We grouped together the apico-dental and the predorso-alveolar contexts because the transition of the formants the induce are very similar [3].

Labial	f, v	io-
Dental	t, d, n	(apico-dental)
	s, z	(predorso-alveolar)
Velar	k	
Labio-palatal	y	
Labio-velar	${ }^{*}$	
Uvular	r	

Instead of measuring by degrees the displace[4], during the realization of the vowel, we will characterize the allophones by their full context The next table reports the vowels of the data bas and the contexts in which they occur. Each ro corresponds to a left context, and each column to and "Lvel" for labio-velar. In order to topalatal, all the positions we add the "pause" and "vowel contexts. They will be treated later on.

Left ${ }^{\text {Right }}$	Labi	Dental	Lpal	Vela	Uvul	Paus	Vowe
Labial		in	in	in		in	in
Dental $\{$	an	ai, an, eu	an	an	ei	an	an
Lpal.	oe	$\underset{i}{i, ~ i n, o u ~}$			0	eu	ei
Lvel.		a				a	
Velar		a,an, in			a		
Uvular \{	$\begin{aligned} & \text { au } \\ & \text { oe } \end{aligned}$	${ }_{\text {an }}^{\text {an }}$ au	au	au		au	au
Pause Vowel		$\begin{aligned} & \text { an } \\ & \text { on } \end{aligned}$				un	

Taking each vowel in each possible context application. However, one can allopo define a sub set by grouping together for each vowel some conshould point onearly the same influence. from one vowel to another. For example, for the oral vowel/au/ we can put together the right contexts "velar", "labial" and "pause"; but for the fealizations an/ we will have to keep separate the labio-palatal" contexts to "velar" an ransitions on the formants.

Pause Influence

sible for theral 3 different realizations are posfible the "onset" or the "offset" of a vowe an have a to a pause. Just after a pause, we aspirated (devoiced) sloginning. synchronized or an before a pause, we can have a glottal stop, a synchronized a devoiced ending. A synchronized beginning or ing of corresponds to a progressive rising or fal ling of the pitch and of the intensity showing a ind the velum and the the vocal cords vibrations ial fed beginning or ending results from a pa laving forward or backward assimilation, the pause the same effect as a voiceless context

ovel devoicing

The voicing feature appears to be rather
cobust for the vowels. Only one context was
strong enough in our data base to devoice a whol owel. This context was /s.w s/ for the vowe a/ in the word "60" (/s.w.a.s.an.t/). After voiceless consonats the vowel $/ a /$, surrounded by ecomes coarticulated with the surroud feature and

Adjacent vowels

For 2 adjacent vowels, belonging to differen words, we noticed the following realizations: For nstressed vovels the transition of the formant smooth and uninterrupted. For stressed vowel. between the vowels and they to 200 ms) appears glottal stop, or the transition is realized by glottalized vocalic portion having a low pitch.

Summary

Because of the implementation in the speech and the "vowel" system we group together the "pause induce formant transitions, and the transitions between adjacent vowels are handled by specific coustical models. In order to obtain a good representation of the various transitions of the phants we had to define an average of 2 alloor each vowel, reported in the following used does not take into account the pause influence and

Vowel	i	ei	ai	a	o au	ou	oe	eu	an	on	in	un	
Alloph.	2	2	2	3	1	3	1	2	1	4	1	4	1

UUPRASEGMENTAL INFORMATION

As this speech recognition system does not use pitch information, and also because for such short sentences the pitch is not a useful syntaxic hierarchical cue, the only suprasegmental informaThe importance of the vocalic duration is justified by the facts that, besides an obvious correlation between word and phoneme durations, the degree of perturbation of the formants by the convowel. Also, the knowledge of the minimal duration is useful for designing the acoustical models. For these reasons we haved started a statistical analysis of the segment durations.

The vowels before a pause are longer than the same in other positions. This agree with the fac that, in French, the stress is on the last syll corresponds for our application to the ofte numbers. One of the most important acoustica realizations of the stressed syllables is the onger duration of the vocalic nucleus. In onsed syllable, the inluence of the following consonant on the vo
vious studies $[7,8]$

The vowel duration in a non final syllable herefore unstressed position, is strongly corre lated with the duration of the sense-group. How-
ever the duration of a stressed vowel is
independent of this influence. For example, the /a/ appearing in the third syllable of a 6 syllables sense-group lasts 54 ms as regards to 82 ms
when being in the unstressed syllable of a 2 syllwhen being in the unstressed syllable of a 2 syl1stressed syllable, it lasts 164 ms in a 6 syllables group even followed by a shortening cononant such as /t/ in French, compared to 144 ms , eteris paribus, in a 2 syllables word

neutral vorel - schia

The neutral vowel should be treated like a possible occurence place rather than an acoustical slow speaking rate in a careful articulation manner, it is possible to pronounce a schwa at the end of every isolated word ending by a consonant. However, for connected words such as the numbers, his neutral vowel may be pronounced at the end of or the schwa (e) is pronounced or not, mplies 4 different theoretical patterns for a quence like "55" (/s.in.k.an.t.(e).s.in.k.(e)/).

For a correct identification of the neutral ovel, one needs to use suprasegmental information such as the vocalic duration. The duration seems to be the more appropriate cue for differentiating
the schwa from the vowels /oe/ and /eu/. For example, the duration of the schwa before a paus was always very short compared to the duration of he previous stressed vowel

CONSONANTS ALLOPHONES

The different realizations of the consonants are first described using phonetical characteris tics such as nasalization, labialization, etc, as After that, we treat the case of the epenthetic sounds and the voicing feature.

Allophonic characterization

Nasalization: This concerns the stop consonant after a nasal vowel. The voiced stop/d/may, by completely nasalized. For the voiceless stops, nasal consonant may be realized before it or even replace it.
Palatalization: This concerns the stop consonants in a right labio-palatal context, or before a palatal, anterior vowel
Labialization: This concerns the fricatives fol lowed by a labio-velar semivowel, or preceeded by rounded posterior vowel
Vocalization: This concerns the voiced fricative v/ and the liquid / $\mathrm{r} /$ in some intervocalic posi tions (for example /oe.v:in/ in "80" and /a.r.an
in "40"). Fricatization: The unvoiced realization of $/ \mathrm{r} /$ is in a strict sense a fricative [9]. The devoicing nay occur, for some speakers, even in an intervocalic context.
Rolled: This concerns, in our data, only the
unvoiced $/ \mathrm{r} / \mathrm{after}$ the voiceless stop consonan
/t/. This realization is produced by a flapping (quasi occlusion) between t.
Tense: For these data, the consonant duratio Tense: For these data, the consonant duratio
vary a lot in two positions: first or last consonant of a sense-group adjacent to a pause. Some studies [10] note an increase in the tension of the articulators, the vocal cords and the velum
for the initial position of a sense-group and for for the initial position of a sense-group and for
the stressed syllable of the group. We will the stressed syllable of the group. We will
denote as "tense" the corresponding realization o the consonants. This characteristic does not correspond to the feature "tense" as defined in some classical theories of segmental phonology
[11], but rather defines some consonantic realiza[11], but rather defines some consonantic realiz

An initial voiced consonant may
short duration, and even vanish, in which case the only remaining cues are the formant tran sitions at the "onset" of the following vowel (for
example $/ \mathrm{y} /$ in $/ \mathrm{y} . \mathrm{i} . \mathrm{t} /$ or $/ \mathrm{v} /$ in $/ \mathrm{v} . \mathrm{in} /$). For example /y/ in $/ \mathrm{y} . \mathrm{i} . \mathrm{t} /$ or /v/ in vin . in . Fo
these reasons we have to define, in an initia position, just after a pause, 2 allophones with different acoustical realizations and differen durations for the fricative /v/ and the semivove y/, one corresponding to a "standard" pronuncia-
tion and the other to the "tense" realization. At the end of a sense-group, in a stressed syllable the VOT of the unvoiced stops, when followe immediatedly by a pause have the same realization as "tense" consonants for some speakers (importan

Speaking rate and epenthetic sounds
For some speakers having a rather slow speaking rate we notice the realization of 2 epenthetic sounds, one consonantic and one vocalic. An
unvoiced consonantic "closure" is realized in a unvoiced consonantic "closure" is realized in
context where the nasal consonant is preceeded b an unvoiced consonant; this occurs for the consonant $/ \mathrm{n} /$ preceeded by the voiceless stop $/ \mathrm{t} /$ or the devoiced fricative $/ z \%$ A neutral vowe (schwa) may occur when the voiced realization /r/ is followed by a voiced consonant.

Voicing feature

The voicing feature, for the consonants, is ften inaccurate and is strongly influenced by the context. In fact, its modification, due to coar
ticulations effects, appears to be the same for most of the consonants: stops, fricatives an semi-vowels. For voiced consonants, the pause has the same influence as an unvoiced context, and forward or backward assimilation. The following table gives, for the specified contexts the consonants for which the voicing feature may be modi fied:

Consonants	Left context	Right context
d, z, v.	Pause	Vowel
z.	Vowel	Pase
y, w.	Unvoiced consonant	Vowel
t, k.	Vowel	Vowel

Sumnary
The following table lists for each charac teristics the consonants that are affected, an the contexts that induce this modification by
forward or backward assimilation. The "*" denote forward or backward assimilation.
an irrelevant context (ie anything).

RECOGNITION TESTS

he applied this study to the speaker indepen dent recognition of the French numbers between base of 26 this recognition test we used a dat speaker having recorded the 10 digits, 50 , eac numbers between 00 and 99 and 50 between 000 and 99. Half of this data base was used in the stud of the acoustical realizations. This data base 2 parts. The data from 13 speakers yere used for training the model parameters, and the data for the 13 other speakers were used for measuring the recognition performances in a speaker independen mode. The acoustical parameters used are the Mel frequency cepstrum coefficients, plus the total
energy and its temporal variation. They are computed every 20 ms (frame rate) using the are com 24 Mel filters; the bandpass of the signal being 6.4 hKz .

The reference point, for measuring the improvement due to the allophones, is a phonetic based model, in which the words are described as sequences of phonemes, each of them being dently of the context. However, because of strong coarticulations effects, the sequences /t.r/ thus and y.i/ were considered as basic units and model. Were represented by a single acoustical model. Using this description, we achieved 93. the testing set. Using an average of 2 allophones by phoneme, introducing specific models to handle thans between adjacent vowels, and keepin 94.9% correct mentionned above, we achieved base, thus reducing recogition rate on the

CONClusion

This paper shows that a good description of the vocabulary improves the performances of a and the different pronunciations are predicted the acoustical models have just to take int
account the variations due to the various speak ers. However, it seems that to correctly predict consider, besides the immediate context, the individualities of the speakers and also the speaking
rate of the current sense-group. The set of allophones, defined for this specific application, can easily be extended to fit new vocabularies.

Although the current version of our speec recognition system cannot handle segment duration information, we noticed that the duration is an important cue for differentiating a final devoiced inal devo. An extra cue for identifying after the fricative.

BIBLIOGRAPHY

[1] D. Jouvet, J. Monné, D. Dubois: "A ne network-based speaker-independent connectedword recognition system"; IEEE proc ICASS
1986, Tokyo, pp 1109-1112, April 1986 2] P. Delattre, A.M. Lieberman, F. C. Cooper: "Acoustics loci and transitional cues for conSonants"; JASA, No 27, pp 769-773, 1955. 3] E. Emerit: "Nouvelle contribution à la Vol 30, No 1, pp 1-31, 1974.
[4] M. Rossi, Y. Nishinuma, G. Mercier: Mndices acoustiques multilocuteurs et independance du la parole"; Speech communication, Northla parole"; Speech communication, North-
Holland, pp 215-217. subséquentes"; Le Maitre Phonétique, 67, 3-ième série, London, 1939.
6] F. Dell: "L'accentuation dans les phrases en francais" in "Les représentations en phonolo-
gie" (F. Dell, D. Hirst, J.R. Vergnaud), Paris, Herman, 1984.
A. Di Cristo:
De la microprosodie à
${ }^{\text {A }}$ intonosyntaxe"; Thèse de doctorat d'Etat, Université de Provence, 1978
81 K. Bartkova, C. Sorin: "Predictive Model of Segmental Duration in French"; (109-th ASA Meeti
1985.
[9] F. Lonchamp: "Phonétique et phonologie"; Formation au traitement de la parole, Fascicule 1 ,
Institut National Polytechnique de Grenoble, Grenoble, 1986.
10] J. Vaissière; "variance and invariance at the word level" in "Invariance and variability in speech processes" "edited by J.S. Perkell
11] R. Jakobson, C. Gunnar, M. Fant, M. Halle: "Preliminaries to speech analysis: The dis tinctive features and their correlates"; The IT Press, Cambridge, Massachusetts, 1969

