Tutorial 5: CSNLP

Autoassociation & Cluster Analysis

Date: 5 December 2001
Student’s name:
In this tutorial, we use autoassociative networks to investigate how networks can learn new pattern

encodings, and also introduce the hierarchical cluster analysis. This tutorial is based primarily on
Chapter Five of Plunkett & Elman.

Part I: Autoassociation

Copy the Chapter 5 directory of Plunkett & Elman to your desktop, and open the project auto1l. This
network associates a 4 unit localist input pattern with itself, via a layer of 2 hidden units. This forces
the network to find a distributed representation of the inputs.

Ex 1: Assuming a rounding criterion. What global level of error is required to guarantee tlearn has
found a solution to the encoding problem?

Ex 2: Train the network, with a seed = 1, learning rate = 0.3, momentum = 0.9, updating the pattern
after every sweep. Has the network learned successfully? What distributed representation is assigned
to the 4 localist input patterns?

Ex 3: Create a set of noisy inputs, e.g. (800 0.1) (0.7 .20 .1) etc. In testing options, tell the
network to use autol.3000.wts, and test the network on the noisy inputs using the Verify the
Network has Learned. How does the network perform? Why might this behaviour be useful?

Ex 4: Do you think the network would learn successfully to autoassociate 5 input/outputs via 2
hidden units? Define a new project, to try this. What is your result?



Part ll: Feature Discovery

Open the project auto3. This network autoassociates 7 bit patterns (distributed representations) via a
hidden layer of 3 units. To solve the problem, the network must find similarities in patterns, or
discover structure in the input so the patterns can be encoded more abstractly and therefore compactly.

Ex 5: Look at the patterns to see if you can find any obvious was of grouping. One technique we can
use for examining similarity is hierarchical clustering. Tlearn does this for us, given two file: one with
the patterns we’re interested in clustering, then other with labels for the patterns. Create two files:

auto3.inp auto3.lab

1101001 pl:1101001
1001111 p2:1001111
1011100 p3:1011100
1101000 p4:1101000
0100001 p5:0100001
0100010 p6:0100010
000O01O00O0 p7:0000100
0010110 p8:0010110

Now select Cluster Analysis from the Special menu, and enter these file names in the dialog box.
Execute the cluster analysis, and examine the resulting hierarchy. Sketch it below.

Ex 6: Now train the network: seed = 1, rate = 0.3, momentum = 0.3, 4000 sweeps. Has the network
learned to regenerate the patterns? Look at the activations of the hidden units for each pattern: can you
see how the network has solved the problem?

Ex 7: We can do a cluster analysis on the hidden units. To create the necessary file, select Probe
Selected Units. The output of this operation give the hidden unit activations for each input
pattern. Use this output to create a file hidden3. inp, by removing the top two lines and saving it
under a new name. Now perform the cluster analysis again using hidden3.inp and auto3. lab.
Are the patterns similarly clustered?

Ex 8: Extra (not to be handed in).

Look at the network in Chapter 7 of Plunkett & Elman. This network attempts to solve the problem of
translation invariance: responding to a pattern which may occur anywhere in the input field. Look at
the shift project. Try training the network. This should be possible. But now test the performance on
unseen examples in novshift.data, you can set this in the Training Options. Refer to the
chapter for more details about this problem, and one solution is given in the shift2 project.



