
Tutorial 6: CSNLP

Simple Recurrent Networks

Date: 12 December 2001
Student’s name:

In this tutorial, the aim is to familiarise yourself with the processing of sequences over time, using
simple recurrent networks. This tutorial is based on Chapter 8 of Plunkett & Elman, and takes you
through the learning of letter sequences: ba dii guuu as discussed in the lecture.

To begin, copy the Chapter 8 directory of Plunkett & Elman to your desktop. The encoding scheme
used in the this simulation is slightly different from that of Elman’s original simulations (this is given
in the codes file):

As with the original encoding, the first bit represents the consonant feature, the other 3 a localist
representations of the each consonant and vowel. The letters file contains a random sequence of
2993 letters which can be converted to the vector representation using the Translate option (while
letters is open and active) and selecting the pattern file codes. This resulting training file can be
saved as srn.data.

Since we are training the network to predict the next letter, create the srn.teach file by copying the
srn.data file, then edit srn.teach, moving the first line to the end of the file.

Ex 1: Examine the network architecture. Based on the network configuration srn.cf, draw the
network as a conventional SRN, indicating which nodes numbers are the inputs, output, hidden, and
context units.

Ex 2: Why do the think the recurrent connections from the hidden to the context units are one to one
with fixed weights?

b 1 1 0 0
d 1 0 1 0
g 1 0 0 1
a 0 1 0 0
i 0 0 1 0
u 0 0 0 1

Ex 3: Train the network (sequentially!) with learning rate = 0.1 and momentum = 0.3 for 70000
sweeps. How many epochs it this? Monitor the RMS error during training, and explain why it seems to
stay so high.

Ex 4: Examine the file predtest.data. What letter sequence is being tested by this file? Test the
network using this file (make sure the appropriate predtest.teach also exists). Also make sure
the simulator is set to Calculate error, under Testing options, so you can easily examine the error
behaviour for each letter in the sequence. Sketch the error plot, annotated with letters at each point.

Ex 5: How well has the network learned to predict the next element in the sequence? Does is correctly
predict the vowel following a consonant? Does is correctly predict the number of vowels?

Ex 6: Does the network correctly predict when a consonant will be the next item in the sequence?
Explain why you think it has or hasn’t.

Ex 7: Examine the networks solution by examining the hidden node activations associated with each
input pattern, by performing a cluster analysis of the hidden units on the test patterns. Sketch the
resulting dendrogram, and comment on what it suggests about the networks solution.

Cluster analysis: clear the output display, then in Network, Probe selected nodes. Output now
contains the hidden unit activations for the patterns in pretest.data. Save the Output as
predtest.hid. Create a Names file called predtest.lab which has b a d i1 i2 g u1 u2 u3,
one per line. Then choose Special, Cluster Analysis.

