Linear Models

Connectionist and Statistical Language Processing

Frank Keller

keller@coli.uni-sb.de

Computerlinguistik

Universität des Saarlandes

Overview

- classification vs. numeric prediction
- linear regression
- least square estimation
- evaluating a numeric model, correlation
- selecting a regression model
- linear regression for classification
- regression trees, model trees

Literature: Witten and Frank (2000: ch. 4, 6), Howell (2002: ch. 15).

Numeric Prediction

An instance in the data set has the following general form:

 $\langle a_{1,i}, a_{2,i}, \ldots, a_{k,i}, x_i \rangle$

where $a_{1,i}, \ldots, a_{k,i}$ are attribute values, and x_i is the target value, for the *i*-th instance in the data set.

So far we have only seen *classification tasks*, where the target value x_i is categorical (represents a class).

Techniques such as decision tree and Naive Bayes are not (directly) applicable if the target is numeric. Instead algorithms for *numeric prediction* can be used, e.g., *linear models*.

Example

Predict CPU performance from configuration data:

cycle	memory	memory	cache	chan	chan	perfor-
time (ns)	min (kB)	max (kB)	(kB)	min	max	mance
125	256	6000	256	16	128	198
29	8000	32000	32	8	32	269
29	8000	32000	32	8	32	220
29	8000	32000	32	8	32	172
29	8000	16000	32	8	16	132
125	2000	8000	0	2	14	52
480	512	4000	32	0	0	67
480	1000	4000	0	0	0	45

Linear Models - p.1/26

Linear Models - p.4/26

Linear Models - p.2/26

Linear Regression

Linear regression is a technique for numeric predictions that's widely used in psychology, medical research, etc.

Key idea: find a linear equation that predicts the target value *x* from the attribute values a_1, \ldots, a_k :

(1) $x = w_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k$

Here, $w_1, \ldots w_k$ are the *regression coefficients*, w_0 is called the *intercept*. These are the model parameters that need to be induced from the data set.

Linear Regression

The regression equation computes the following *predicted* value x'_i for the *i*-th instance in the data set.

(2)
$$x'_i = w_0 + w_1 a_{1,i}, w_2 a_{2,i}, \dots, w_k a_{k,i} = w_0 + \sum_{j=1}^k w_j a_{j,i}$$

Key idea: to determine the coefficients w_0, \ldots, w_k , minimize e, the squared difference between the predicted and the actual value, summed over all n instances in the data set:

(3)
$$e = \sum_{i=1}^{n} (x_i - x'_i)^2 = \sum_{i=1}^{n} \left(x_i - w_0 - \sum_{j=1}^{k} w_j a_{j,i} \right)^2$$

The method for this is called *Least Square Estimation* (LSE).

Least Square Estimation

We demonstrate how LSE works with the simple case of k = 1, dropping the intercept w_0 . The error equation (3) simplifies to (abbreviating $w_1 = w$ and $a_1 = a$):

(4)
$$e = \sum_{i} (x_i - wa_i)^2 = \sum_{i} (x_i^2 - 2wa_i x_i + w^2 a_i^2)$$

Now differentiate the error equation in (4) with respect to w:

(5)
$$\frac{\partial e}{\partial w} = \sum_{i} (-2a_i x_i + 2wa_i^2) = -2\sum_{i} a_i x_i + 2w\sum_{i} a_i^2$$

The derivative is the *slope* of the error function. The slope is zero at all points at which the function has a minimum.

Least Square Estimation

To minimize the squared error for the data set, we therefore set the derivative in (5) equal to zero:

(6)
$$-2\sum_{i}a_{i}x_{i}+2w\sum_{i}a_{i}^{2}=0$$

By resolving this equation to w, we obtain a formula for computing the value of w that minimizes the error:

$$w = \frac{\sum_{i} a_{i} x_{i}}{\sum_{i} a_{i}^{2}}$$

This formula can be generalized to regression equations with more than one coefficient.

Linear Models - p.5/26

Linear Models - p.6/26

Example

 $\begin{array}{cccc}
a & x \\
1 & 2 \\
2 & 5 \\
-1 & -2 \\
5 & 8
\end{array}$

Use Least Square Estimation to compute *w* for this data set:

(8)
$$w = \frac{\sum_{i} x_{i} a_{i}}{\sum_{i} a_{i}^{2}} = \frac{1 \cdot 2 + 2 \cdot 5 + (-1)(-2) + 5 \cdot 8}{1^{2} + 2^{2} + (-1)^{2} + 5^{2}} = 1.74$$

Regression equation: x' = wa = 1.74a

Evaluating a Numeric Model

A suitable numeric measure for the fit of a linear model is the *mean squared error:*

(9)
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - x'_i)^2$$

Intuitively, this represents how much the predicted values diverge from the actual values on average.

Note that the MSE is the quantity the LSE algorithm minimizes.

Evaluating a Numeric Model

The fit of a regression model can be visualized by plotting the predicted data values against the actual values.

Example

Compute the mean squared error for the sample data set and the regression equation x' = 1.74a:

а	x	<i>x</i> ′	$(x - x')^2$
1	2	1.74	0.068
2	5	3.48	1.346
-1	-2	-1.74	0.068
5	8	8.70	0.490

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - x'_i)^2 = \frac{1}{4} (0.068 + 1.346 + 0.068 + 0.490) = 0.646$$

Linear Models - p.9/26

.

Correlation Coefficient

The correlation coefficient *r* measures the *degree of linear association* between predicted and the actual values:

 $r = \frac{S_{PA}}{S_{PA}}$

(10)

(11)
$$S_{PA} = \frac{\sum_{i=1}^{n} (x'_i - \bar{x}')(x_i - \bar{x})}{\sum_{i=1}^{n} (x'_i - \bar{x}')(x_i - \bar{x})}$$

$$S_{PA} = \frac{-1}{n-1}$$

(12)
$$S_P = \sqrt{\frac{\sum_{i=1}^n (x_i' - \bar{x}')^2}{n-1}} \quad S_A = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$$

Here \bar{x} and \bar{x}' are the means of the actual and predicted values, S_P and S_A their *standard deviations*. S_{PA} is the *covariance* of the actual and predicted values.

Correlation Coefficient

Some important properties:

- The correlation coefficient r ranges from 1.0 (perfect correlation) to 0 (no correlation) to -1.0 (negative correlation).
- Intuitively, r expresses how well the data points fit on the straight line described by the regression model.
- We can test if *r* is *significant*. Null hypothesis: there is no linear relationship between predicted and actual values.
- We can also compute r^2 , which represents the *amount of variance accounted for* by the regression model.

Example

Compute the correlation coefficient for the example data set:

$$\begin{split} \bar{x} &= 3.25 \quad \bar{x}' = 3.14 \\ S_{PA} &= ((1.74 - 3.14)(2 - 3.25) + (3.48 - 3.14)(5 - 3.25) + (-1.74 - 3.14)(-2 - 3.25) + (8.70 - 3.14)(8 - 3.25))/3 \\ &= 18.13 \\ S_P^2 &= ((1.74 - 3.14)^2 + (3.48 - 3.14)^2 + (-1.74 - 3.14)^2 + (8.70 - 3.14)^2)/3 = 18.93 \\ S_A^2 &= ((2 - 3.25)^2 + (5 - 3.25)^2 + (-2 - 3.25)^2 + (8 - 3.25)^2)/3 = 18.25 \\ r &= 18.13/(\sqrt{18.93} \cdot \sqrt{18.25}) = 0.975 \\ r^2 &= 0.951 \end{split}$$

Partial Correlations

We can compute the *multiple correlation coefficient* that tells us how well the full regression model (with all attributes) fits the target values.

We can also compute the correlation between the values of a single attribute and the target values.

However this is not very useful as attributes can be *intercorrelated*, i.e., they correlate with each other (colinearity).

We need to compute the *partial correlation coefficient*, which tells us how much variance is *uniquely* accounted for by an attribute once the other attributes are partialled out.

Linear Models - p.13/26

Linear Models - p. 14/26

Selecting a Regression Model

We want to build a regression model that only contains the attributes that are predictive. Several methods to achieve this:

- *All subsets:* compute models for all subsets of attributes and chose the one with the highest multiple *r*.
- *Backward elimination:* compute a model for all attributes, and then eliminate the one with the lowest partial *r*. Iterate until the multiple *r* deteriorates.
- *Forward selection:* compute a model consisting only of the attributes with the highest partial *r*. Then add the next best attribute. Stop when the multiple *r* doesn't improve.

Linear Models - p.17/26

Linear Models - p.19/26

Different model selection algorithm can yield different models.

Linear Regression for Classification

Regression can be applied to *classification:*

- Perform a separate regression on each class, set the target value to 1 if an instance is in the class, and 0 if it is not in the class.
- The regression equation then approximates the *membership function* for the class (1 for members, 0 for non-members).
- To classify a new instance, compute the regression value for each membership function, and assign the new instance the class with the highest value.
- This procedure is called *multiresponse linear regression*.

Testing on Unseen Data

We compute the regression weights and perform the model selection on the *training data*.

To evaluate the resulting model, we compute model fit on unseen *test data* using LSE or the correlation coefficient.

Techniques for testing on unseen data (see last lecture):

- *Holdout:* set aside a random sample of the data set for testing, train on the rest.
- *k-fold crossvalidation:* split the data in *k* random partition and test on each one in turn.
- *leave-one-out:* set *k* to the number of instances in the data set, i.e., test on each instance separately.

Linear Models - p.18/26

Linear Models - p.20/26

Linear Separability

Linear regression approximates a linear function. This means that the classes have to be *linearly separable*.

For many interesting problems, this is not the case.

Regression Trees

Regression trees are decision trees for numeric attributes. The leaves are not labeled with classes, but with the mean of the target values of the instances classified by a given branch.

To construct a regression tree, chose splitting attributes to minimize intrasubset variation for each branch. Maximize standard deviation reduction (instead of information gain):

(13)
$$SDR = \sigma_T - \sum_i \frac{|T_i|}{|T|} \sigma_{T_i}$$

Where T is the set of instances classified at a given node, T_1, \ldots, T_i are the subset that T is split into, and σ is the standard deviation.

Model trees are regression trees that have linear regression models at their leaves, not just numeric values.

Induction algorithm:

- Induce a regression tree using standard deviation ٠ reduction as the splitting criterion.
- Prune back the tree starting from the leaves. ٠
- For each leaf construct a regression model that accounts ٠ for the instances classified by this leaf.

Model trees get around the problem of linear separability by combining several regression models.

Example

Example

Linear Models - p.23/26

Linear Models - p.21/26

Linear Models - p.24/26

Summary

Linear regression models are used for *numeric prediction*. They fit a *linear equation* that combines attributes values to predict a numeric target attribute.

Least square estimation can be used to determine the coefficients in the regression equation so that the difference between predicted and actual values is minimal.

A numeric model can be evaluates using the mean squared error or the *correlation coefficient*.

Regression models can be used for classification either directly in *multiresponse regression* or in combination with decision trees: *regression trees, model trees*.

Linear Models – p.25/26

References

Howell, David C. 2002. Statistical Methods for Psychology. Pacific Grove, CA: Duxbury, 5th edn.

Witten, Ian H., and Eibe Frank. 2000. *Data Mining: Practical Machine Learing Tools and Techniques with Java Implementations.* San Diego, CA: Morgan Kaufmann.

Linear Models – p.26/26