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Universiẗat des Saarlandes

Linear Models – p.1/26

Overview

• classification vs. numeric prediction

• linear regression

• least square estimation

• evaluating a numeric model, correlation

• selecting a regression model

• linear regression for classification

• regression trees, model trees

Literature: Witten and Frank (2000: ch. 4, 6), Howell
(2002: ch. 15).
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Numeric Prediction

An instance in the data set has the following general form:

〈a1,i,a2,i, . . . ,ak,i,xi〉
where a1,i, . . . ,ak,i are attribute values, and xi is the target
value, for the i-th instance in the data set.

So far we have only seen classification tasks, where the target
value xi is categorical (represents a class).

Techniques such as decision tree and Naive Bayes are not
(directly) applicable if the target is numeric. Instead algorithms
for numeric prediction can be used, e.g., linear models.
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Example

Predict CPU performance from configuration data:

cycle memory memory cache chan chan perfor-

time (ns) min (kB) max (kB) (kB) min max mance

125 256 6000 256 16 128 198

29 8000 32000 32 8 32 269

29 8000 32000 32 8 32 220

29 8000 32000 32 8 32 172

29 8000 16000 32 8 16 132
. . .

125 2000 8000 0 2 14 52

480 512 4000 32 0 0 67

480 1000 4000 0 0 0 45
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Linear Regression

Linear regression is a technique for numeric predictions that’s
widely used in psychology, medical research, etc.

Key idea: find a linear equation that predicts the target value x
from the attribute values a1, . . . ,ak:

x = w0 +w1a1 +w2a2 + . . .+wkak(1)

Here, w1, . . .wk are the regression coefficients, w0 is called the
intercept. These are the model parameters that need to be
induced from the data set.
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Linear Regression

The regression equation computes the following predicted
value x′i for the i-th instance in the data set.

x′i = w0 +w1a1,i,w2a2,i, . . . ,wkak,i = w0 +
k

∑
j=1

wjaj ,i(2)

Key idea: to determine the coefficients w0, . . .wk, minimize e,
the squared difference between the predicted and the actual
value, summed over all n instances in the data set:

e=
n

∑
i=1

(xi −x′i)
2 =

n

∑
i=1

(
xi −w0−

k

∑
j=1

wjaj ,i

)2

(3)

The method for this is called Least Square Estimation (LSE).
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Least Square Estimation

We demonstrate how LSE works with the simple case of k = 1,
dropping the intercept w0. The error equation (3) simplifies to
(abbreviating w1 = w and a1 = a):

e= ∑
i

(xi −wai)2 = ∑
i

(x2
i −2waixi +w2a2

i )(4)

Now differentiate the error equation in (4) with respect to w:

∂e
∂w

= ∑
i

(−2aixi +2wa2
i ) = −2∑

i

aixi +2w∑
i

a2
i(5)

The derivative is the slope of the error function. The slope is
zero at all points at which the function has a minimum.
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Least Square Estimation

To minimize the squared error for the data set, we therefore set
the derivative in (5) equal to zero:

−2∑
i

aixi +2w∑
i

a2
i = 0(6)

By resolving this equation to w, we obtain a formula for
computing the value of w that minimizes the error:

w = ∑i aixi

∑i a
2
i

(7)

This formula can be generalized to regression equations with
more than one coefficient.

Linear Models – p.8/26



Example

Sample data set: a x
1 2
2 5

−1 −2
5 8

Use Least Square Estimation to compute w for this data set:

w = ∑i xiai

∑i a
2
i

=
1 ·2+2 ·5+(−1)(−2)+5·8

12 +22 +(−1)2 +52
= 1.74(8)

Regression equation: x′ = wa= 1.74a
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Evaluating a Numeric Model

The fit of a regression model can be visualized by plotting the
predicted data values against the actual values.
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Evaluating a Numeric Model

A suitable numeric measure for the fit of a linear model is the
mean squared error:

MSE=
1
n

n

∑
i=1

(xi −x′i)
2(9)

Intuitively, this represents how much the predicted values
diverge from the actual values on average.

Note that the MSE is the quantity the LSE algorithm minimizes.
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Example

Compute the mean squared error for the sample data set and
the regression equation x′ = 1.74a:

a x x′ (x−x′)2

1 2 1.74 0.068
2 5 3.48 1.346

−1 −2 −1.74 0.068
5 8 8.70 0.490

MSE= 1
n

n
∑
i=1

(xi −x′i)
2 = 1

4(0.068+1.346+0.068+0.490) =

0.646
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Correlation Coefficient

The correlation coefficient r measures the degree of linear
association between predicted and the actual values:

r =
SPA

SPSA
(10)

SPA = ∑n
i=1(x′i − x̄′)(xi − x̄)

n−1
(11)

SP =

√
∑n

i=1(x′i − x̄′)2

n−1
SA =

√
∑n

i=1(xi − x̄)2

n−1
(12)

Here x̄ and x̄′ are the means of the actual and predicted values,
SP and SA their standard deviations. SPA is the covariance of the
actual and predicted values.
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Example

Compute the correlation coefficient for the example data set:

x̄ = 3.25 x̄′ = 3.14
SPA = ((1.74−3.14)(2−3.25)+(3.48−3.14)(5−3.25)+

(−1.74−3.14)(−2−3.25)+(8.70−3.14)(8−3.25))/3
= 18.13

S2
P = ((1.74−3.14)2+(3.48−3.14)2+

(−1.74−3.14)2+(8.70−3.14)2)/3 = 18.93
S2

A = ((2−3.25)2+(5−3.25)2+
(−2−3.25)2+(8−3.25)2)/3 = 18.25

r = 18.13/(
√

18.93·√18.25) = 0.975
r2 = 0.951
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Correlation Coefficient

Some important properties:

• The correlation coefficient r ranges from 1.0 (perfect
correlation) to 0 (no correlation) to −1.0 (negative
correlation).

• Intuitively, r expresses how well the data points fit on the
straight line described by the regression model.

• We can test if r is significant. Null hypothesis: there is no
linear relationship between predicted and actual values.

• We can also compute r2, which represents the amount of
variance accounted for by the regression model.
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Partial Correlations

We can compute the multiple correlation coefficient that tells us
how well the full regression model (with all attributes) fits the
target values.

We can also compute the correlation between the values of a
single attribute and the target values.

However this is not very useful as attributes can be
intercorrelated, i.e., they correlate with each other (colinearity).

We need to compute the partial correlation coefficient, which
tells us how much variance is uniquely accounted for by an
attribute once the other attributes are partialled out.
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Selecting a Regression Model

We want to build a regression model that only contains the
attributes that are predictive. Several methods to achieve this:

• All subsets: compute models for all subsets of attributes
and chose the one with the highest multiple r .

• Backward elimination: compute a model for all attributes,
and then eliminate the one with the lowest partial r . Iterate
until the multiple r deteriorates.

• Forward selection: compute a model consisting only of the
attributes with the highest partial r . Then add the next
best attribute. Stop when the multiple r doesn’t improve.

Different model selection algorithm can yield different models.
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Testing on Unseen Data

We compute the regression weights and perform the model
selection on the training data.

To evaluate the resulting model, we compute model fit on
unseen test data using LSE or the correlation coefficient.

Techniques for testing on unseen data (see last lecture):

• Holdout: set aside a random sample of the data set for
testing, train on the rest.

• k-fold crossvalidation: split the data in k random partition
and test on each one in turn.

• leave-one-out: set k to the number of instances in the data
set, i.e., test on each instance separately.
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Linear Regression for Classification

Regression can be applied to classification:

• Perform a separate regression on each class, set the
target value to 1 if an instance is in the class, and 0 if it is
not in the class.

• The regression equation then approximates the
membership function for the class (1 for members, 0 for
non-members).

• To classify a new instance, compute the regression value
for each membership function, and assign the new
instance the class with the highest value.

• This procedure is called multiresponse linear regression.
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Linear Separability

Linear regression approximates a linear function. This means
that the classes have to be linearly separable.
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For many interesting problems, this is not the case.
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Regression Trees

Regression trees are decision trees for numeric attributes. The
leaves are not labeled with classes, but with the mean of the
target values of the instances classified by a given branch.

To construct a regression tree, chose splitting attributes to
minimize intrasubset variation for each branch. Maximize
standard deviation reduction (instead of information gain):

SDR= σT −∑
i

|Ti|
|T|σTi(13)

Where T is the set of instances classified at a given node,
T1, . . . ,Ti are the subset that T is split into, and σ is the
standard deviation.
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Example
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Model Trees

Model trees are regression trees that have linear regression
models at their leaves, not just numeric values.

Induction algorithm:

• Induce a regression tree using standard deviation
reduction as the splitting criterion.

• Prune back the tree starting from the leaves.

• For each leaf construct a regression model that accounts
for the instances classified by this leaf.

Model trees get around the problem of linear separability by
combining several regression models.
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Example
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Summary

Linear regression models are used for numeric prediction. They
fit a linear equation that combines attributes values to predict a
numeric target attribute.

Least square estimation can be used to determine the
coefficients in the regression equation so that the difference
between predicted and actual values is minimal.

A numeric model can be evaluates using the mean squared
error or the correlation coefficient.

Regression models can be used for classification either directly
in multiresponse regression or in combination with decision
trees: regression trees, model trees.
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