

Recall the convergence rule: The error, $\delta = (t_{out} - a_{out})$ $\Delta \theta = -\varepsilon \delta$ $\Delta w = \varepsilon \delta a_{in}$					And the net: $\theta = 1$ $\varepsilon = 0.5$ $\theta = 1$ 0.2 0.1 a_1				a_1
n	W ₂₀	W ₂₁	θ	a2	<i>t</i> ₂	δ	$\Delta \theta$	ΔW_{20}	ΔW_{21}
0 0	.2	.1	1.0	0	0	0	0	0	0
10	.2	.1	1.0	0	1	1.0	-0.5	0.5	0
01	.7	.1	0.5	0	1	1.0	-0.5	0	0.5
11	.7	.6	0.0	1	1	0	0	0	0
0 0	.7	.6	0.0	0	0	0	0	0	0
) 1	.7	.6	0.0	1	1	0	0	0	0
10	.7	.6	0.0	1	1	0	0	0	0
11	.7	.6	0.0	1	1	0	0	0	0

 Calculating Error Consider a simple network for learning the AND operation After training (1000 sweeps, 250 epochs), we can calculate the global 													
(RMS) error as follows:													
Input	Target	Output	(t-o)^2	1									
0 0	0	0,147	0,022										
0 1	0	0,297	0,088										
1 0	0	0,334	0,112										
1 1	1	0,552	0,201										
		RMS:	0,325										
Observe how error steadily falls during training													
© Matthew W. Crocker	Connectionist	and Statistical Langua	age Processing		23								

