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Basic Structure of Nodes

� A node can be characterised as follows:
❑ Input connections representing the flow of activation from other nodes or

some external source

❑ Each input connection has its own weight, which determines how much
influence that input has on the node

❑ A node i has an output activation ai = f(neti) which is a function of the
weighted sum of its input activations, net.

� The net input is determined as follows: net w ai ij j
j
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Activation functions

� The activation function determines the activation ai for node i from the
net input (neti) to the node: f(neti)

� Linear activation function
❑ (McCulloch-Pitts neurode, perceptron)

❑ Identity: the ai = neti

� Threshold activation function:
❑ IF neti > T  THEN ai := neti - T

❑ ELSE ai := 0
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More Activation Functions

� Binary threshold activation function:
❑ IF neti > T  THEN ai := 1

❑ ELSE ai := 0

� Non-linear activation function
❑ It is often more useful to use the

“sigmoidal” logistic function:

a f net
ei i neti
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Calculating the activation: neti is 1.25

� Linear activation:

� Linear threshold: T=0.5

� Binary threshold: T=0.5

� Non-linear activation:
❑ Sigmoid or

„logistic“ function
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About activation functions

� The activation function defines the relationship between the net input to
a node, and its activation level (which is also its output).

� Neurons in the brain have thresholds, only fire with sufficient net input.

� Non-linearity (i.e.where low input lead to zero activation) can be useful
to reduce the effects of spurious inputs, noise.

� Most common in connectionist modelling: sigmoid/logistic
❑ Activation ranges between 0 and 1
❑ Rate of activatation increase is highest for net inputs around 0
❑ Models neurons by implementing thresholding, a maximum activity, and

smooth transition between states.

� The sigmoid function also has nice mathematical properties
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Summary of network architecture

� The activation of a unit i is
represented by the symbol ai.

� The extent to which unit j influences
unit i is determined by the weight wij

� The input from unit j to unit i is the
product: aj * wij

� For a node i in the network:

� The output activation of node i is
determined by the activation
function, e.g. the logistic:

netinput w ai ij j
j

=∑

a f netinput
ei i neti
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Learning in connectionist networks

� Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the actual
output activation and the correct output activation
❑ An input is presented to the network
❑ Activations are propagated through the network to its output
❑ Outputs are compared to “correct” outputs: difference is called error
❑ Weights are adjusted

� The Delta Rule:

❑ [ai(desired)-ai(obtained] is the difference between the desired output activation and
the actual activation produced by the network
✚ What is the “error”?

❑ aj is the activity of the contributing unit j
✚ How much activation is this unit responsible for?

❑ ε is the learning rate parameter.
✚ How rapidly do we want to make changes?

∆w a a aij i i j= −[ ]( ) ( )desired obtained ε



5

© Matthew W. Crocker Connectionist and Statistical Language Processing 9

Training the Network

� Consider the AND function
❑ Present stimulus: 0  0

❑ Compute output activation

❑ Compared with desired output ( 0 )

❑ Use Delta rule to change weights

❑ Present next stimulus:  0  1

❑ ...

� An Epoch, consists of a single presentation of all training examples
❑ Here there are 4 such examples

� A Sweep, is a presentation of a single training example
❑ So, 250 epochs consists of 1000 sweeps
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Summary

� Connectionism is inspired by information processing in the brain

� Models typically contain several layers of processing units
❑ Units correspond to a neuron (or group of neurons)
❑ Units sum weighted inputs from previous layers, and compute activation
❑ Output activation is passed to units of the next layer

� An input stimulus causes a “patter of activation” on the first layer
❑ Activations are then propagated through the network
❑ The influence of one unit upon another is determined by the weight
❑ The output response is the “pattern of activation” on the final layer

� Learning aims to reduce the discrepancy between actual and desired
output patterns of activation
❑ The Delta rule iteratively changes the weights of successive epochs
❑ Training is complete when error is sufficiently reduced
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“Perceptrons” [Rosenblatt 1958]

� Perceptron: a simple, one-layer, feed-forward network:

� Binary threshold activation function:

� Learning: the perceptron convergence rule
❑ Two parameters can be adjusted:

✚ The threshold

✚ The weights
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Learning OR

� Consider the following simple perceptron:
❑ Recall the convergence rule:

� We want to train this to learn boolean OR:
❑ Note: changes have opposite signs

✚ E.g if activity is less than target, ∂ is positive
� Threshold is decreased

� Weight is increased

❑ If ∂ is non-zero, threshold is always changed
✚ But if ain is zero, the weight is not changed

❑ The changes can be calculated straight-forwardly, but do they lead to
convergence on a solution to a problem?
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Learning OR continued …

� Recall the convergence rule: And the net:
The error, δ

θ εδ
εδ
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Gradient descent

� Let’s define the error on the outputs
as: Ep=(tout-aout)2

❑ Recall: aout = ∑w ain

❑ This means Ep is always positive

� For a single layer net, if we consider one
weight, holding the others constant:
❑ Plot Error versus varying the weight

� The lowest point on the curve, represents
the minimum error possible for:
❑ For pattern p

❑ By varying a given weight w

� Learning: the network is always at some point on the error curve
❑ Use the slope of the curve to change the weights in the right direction

❑ If slope is positive, then decrease the weight

❑ If slope is negative, increase the weight

Weight
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Visualising the error „surface“
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Gradient descent continued

� We need calculus to allow us to determine how the error varies when a
particular weight is varied:
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Gradient descent and the delta rule

� The perceptron convergence rule:

� Our revised learning rule, based on gradient descent is:

❑ where F* is the slope of the activation function

� If the activation function is linear, the slope is constant:

❑ where k is a constant representing the learning rate and slope

� This corresponds to the original Delta rule:
❑ It is straight-forward to calculate

❑ Performs gradient descent to the bottom of an the error curve

❑ ∆w is proportional to (tout-aout), so changes get smaller as error is reduced

❑ In 2-layer networks, there is a single minimum which gradient descent
learning is guaranteed to find a solution, it one exists.

∆w ain=εδ

∆w F ain= 2εδ *

∆w k ain= δ
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Learning with the Sigmoid activation function

� Networks with linear activation functions:
❑ have mathematically well-defined learning capacities

❑ they are known to be limited in the kinds of problems they can solve

� The logistic, or sigmoid, function is:
❑ Non-linear, more powerful

❑ More neurologically plausible

❑ Less well-understood, more difficult to analyse mathematically

� Recall:

a f net
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Behaviour of the logistic function

� Deriving the slope of the logistic
function:

� The Delta rule, assuming the
logistic function:
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Training a network

� The training phase involves
❑ Presenting an input pattern, and computing the output for the network

using the current connection weights: aout=f(∑in wout,in x ain)

❑ Calculating the error between the desired and the actual output (tout -aout)

❑ Using the Delta rule (appropriate for the activation function):

� One such cycle is called a sweep

� A sweep through each patter is called an epoch

� We can define the global error of the network, as the average error
across all input patterns, k:
❑ One common measure is the

square root of mean error

❑ Squaring avoids positive and negative error cancelling each other out

∆w t a a a aout out out out in= − −η( ) ( )1

rms error =
−∑( )

r r
t o
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k k
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Training: an example

� Consider the simple feedforward network:
❑ Assume an input pattern: 1  1

❑ Assume a learning rate of 0.1

❑ Assume a sigmoid activation

❑ Desired output is: 1

� Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037

a f

t a f
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The dynamics of weight changes

� Learning rate: predetermined constant

� The error: large error = large weight change

� The slope of the activation function:
❑ The derivative of the logistic is largest for netinputs around 0, and for

activations around .5

❑ Small netinputs co-occur with small weights

❑ Small weights tend to occur early in training

❑ The result: bigger changes during early stages of learning
✚ More resilience in older network: harder to teach new tricks!

� The momentum:
❑ This parameter determines how much of the previous weight change

affects the current weight change
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Calculating Error

� Consider a simple network for learning the AND operation

� After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:

� Observe how error steadily falls during training

0,325RMS:

0,2010,55211 1

0,1120,33401 0

0,0880,29700 1

0,0220,14700 0

( t -o)^2OutputTargetInput
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Summary

� Learning rules:
❑ Perceptron convergence rule

❑ Delta rule
✚ Depends on the (slope of the) activation function

❑ For 2-layer networks using these rules:
✚ A solution will be found, if it exists

❑ How do we know if network has learned successfully?

� Error:
❑ For learning, we use (tout -aout) to change weights

❑ To characterise the performance of the network as a whole, we need a
measure of global error:
✚ Across all outputs

✚ Across all training patterns

❑ One possible measure is RMS
✚ Another is entropy: doesn’t really matter, since we only need to know if

performance is improving or deteriorating on a relative basis


