
1

Connectionist and Statistical
 Language Processing

Lecture 2: Learning and Training

Matthew W Crocker

Computerlinguistik

Universität des Saarlandes

© Matthew W. Crocker Connectionist and Statistical Language Processing 2

Basic Structure of Nodes

� A node can be characterised as follows:
❑ Input connections representing the flow of activation from other nodes or

some external source

❑ Each input connection has its own weight, which determines how much
influence that input has on the node

❑ A node i has an output activation ai = f(neti) which is a function of the
weighted sum of its input activations, net.

� The net input is determined as follows: net w ai ij j
j

= ∑

∑ ƒ(neti)
Node
inputs

Node
outputs

wi1

wi2

wi3

a1

a2

a3

ai

2

© Matthew W. Crocker Connectionist and Statistical Language Processing 3

Activation functions

� The activation function determines the activation ai for node i from the
net input (neti) to the node: f(neti)

� Linear activation function
❑ (McCulloch-Pitts neurode, perceptron)

❑ Identity: the ai = neti

� Threshold activation function:
❑ IF neti > T THEN ai := neti - T

❑ ELSE ai := 0

netinput

ac
tiv

ity

netinput

ac
tiv

ity

© Matthew W. Crocker Connectionist and Statistical Language Processing 4

More Activation Functions

� Binary threshold activation function:
❑ IF neti > T THEN ai := 1

❑ ELSE ai := 0

� Non-linear activation function
❑ It is often more useful to use the

“sigmoidal” logistic function:

a f net
ei i neti

= =
+

()
1

1

netinput

ac
tiv

ity

3

© Matthew W. Crocker Connectionist and Statistical Language Processing 5

Calculating the activation: neti is 1.25

� Linear activation:

� Linear threshold: T=0.5

� Binary threshold: T=0.5

� Non-linear activation:
❑ Sigmoid or

„logistic“ function

f net net

f
i i()

(.) .

=
=1 25 1 25

IF then

ELSE

net T f net net T

f net

f

i i i

i

> = −
=

= − =

()

()

(.) . . .

0

1 25 1 25 0 5 0 75

IF then

ELSE

net T f net

f net

f

i i

i

> =
=

=

()

()

(.)

1

0

1 25 1

f net
e

f

i neti
()

(.) .

=
+

=

1
1

1 25 0 777

© Matthew W. Crocker Connectionist and Statistical Language Processing 6

About activation functions

� The activation function defines the relationship between the net input to
a node, and its activation level (which is also its output).

� Neurons in the brain have thresholds, only fire with sufficient net input.

� Non-linearity (i.e.where low input lead to zero activation) can be useful
to reduce the effects of spurious inputs, noise.

� Most common in connectionist modelling: sigmoid/logistic
❑ Activation ranges between 0 and 1
❑ Rate of activatation increase is highest for net inputs around 0
❑ Models neurons by implementing thresholding, a maximum activity, and

smooth transition between states.

� The sigmoid function also has nice mathematical properties

4

© Matthew W. Crocker Connectionist and Statistical Language Processing 7

Summary of network architecture

� The activation of a unit i is
represented by the symbol ai.

� The extent to which unit j influences
unit i is determined by the weight wij

� The input from unit j to unit i is the
product: aj * wij

� For a node i in the network:

� The output activation of node i is
determined by the activation
function, e.g. the logistic:

netinput w ai ij j
j

=∑

a f netinput
ei i neti

= =
+

()
1

1

© Matthew W. Crocker Connectionist and Statistical Language Processing 8

Learning in connectionist networks

� Supervised learning in connectionist networks involves successively
adjusting connection weights to reduce the discrepancy between the actual
output activation and the correct output activation
❑ An input is presented to the network
❑ Activations are propagated through the network to its output
❑ Outputs are compared to “correct” outputs: difference is called error
❑ Weights are adjusted

� The Delta Rule:

❑ [ai(desired)-ai(obtained] is the difference between the desired output activation and
the actual activation produced by the network
✚ What is the “error”?

❑ aj is the activity of the contributing unit j
✚ How much activation is this unit responsible for?

❑ ε is the learning rate parameter.
✚ How rapidly do we want to make changes?

∆w a a aij i i j= −[]() ()desired obtained ε

5

© Matthew W. Crocker Connectionist and Statistical Language Processing 9

Training the Network

� Consider the AND function
❑ Present stimulus: 0 0

❑ Compute output activation

❑ Compared with desired output (0)

❑ Use Delta rule to change weights

❑ Present next stimulus: 0 1

❑ ...

� An Epoch, consists of a single presentation of all training examples
❑ Here there are 4 such examples

� A Sweep, is a presentation of a single training example
❑ So, 250 epochs consists of 1000 sweeps

111

001

010

000

OutputInput 2Input 1

© Matthew W. Crocker Connectionist and Statistical Language Processing 10

Summary

� Connectionism is inspired by information processing in the brain

� Models typically contain several layers of processing units
❑ Units correspond to a neuron (or group of neurons)
❑ Units sum weighted inputs from previous layers, and compute activation
❑ Output activation is passed to units of the next layer

� An input stimulus causes a “patter of activation” on the first layer
❑ Activations are then propagated through the network
❑ The influence of one unit upon another is determined by the weight
❑ The output response is the “pattern of activation” on the final layer

� Learning aims to reduce the discrepancy between actual and desired
output patterns of activation
❑ The Delta rule iteratively changes the weights of successive epochs
❑ Training is complete when error is sufficiently reduced

6

© Matthew W. Crocker Connectionist and Statistical Language Processing 11

“Perceptrons” [Rosenblatt 1958]

� Perceptron: a simple, one-layer, feed-forward network:

� Binary threshold activation function:

� Learning: the perceptron convergence rule
❑ Two parameters can be adjusted:

✚ The threshold

✚ The weights

aout

ain

w netinput out in
in

w a= ⋅∑

a =1 if netinput

= 0 otherwise
out out >θ

The error, δ
θ εδ

εδ

= −
= −
=

()t a

w a

out out

in

∆
∆

© Matthew W. Crocker Connectionist and Statistical Language Processing 12

Learning OR

� Consider the following simple perceptron:
❑ Recall the convergence rule:

� We want to train this to learn boolean OR:
❑ Note: changes have opposite signs

✚ E.g if activity is less than target, ∂ is positive
� Threshold is decreased

� Weight is increased

❑ If ∂ is non-zero, threshold is always changed
✚ But if ain is zero, the weight is not changed

❑ The changes can be calculated straight-forwardly, but do they lead to
convergence on a solution to a problem?

a2

a0 a1

w20 w21The error, δ
θ εδ

εδ

= −
= −
=

()t a

w a

out out

in

∆
∆

111

101

110

000

a2a1a0

Classification problem

7

© Matthew W. Crocker Connectionist and Statistical Language Processing 13

Learning OR continued …

� Recall the convergence rule: And the net:
The error, δ

θ εδ
εδ

= −
= −
=

()t a

w a

out out

in

∆
∆

a2

a0 a1

0.2 0.1θ =1

0000110.0.6.71 1

0000110.0.6.71 0

0000110.0.6.70 1

0000000.0.6.70 0

0000110.0.6.71 1

0.50-0.51.0100.5.1.70 1

00.5-0.51.0101.0.1.21 0

0000001.0.1.20 0

∆w21∆w20∆θδt2a2
θw21w20In

ε = 0 5.

© Matthew W. Crocker Connectionist and Statistical Language Processing 14

Gradient descent

� Let’s define the error on the outputs
as: Ep=(tout-aout)2

❑ Recall: aout = ∑w ain

❑ This means Ep is always positive

� For a single layer net, if we consider one
weight, holding the others constant:
❑ Plot Error versus varying the weight

� The lowest point on the curve, represents
the minimum error possible for:
❑ For pattern p

❑ By varying a given weight w

� Learning: the network is always at some point on the error curve
❑ Use the slope of the curve to change the weights in the right direction

❑ If slope is positive, then decrease the weight

❑ If slope is negative, increase the weight

Weight

E
rr

or
 (

E
p
)

Optimum weight

8

© Matthew W. Crocker Connectionist and Statistical Language Processing 15

Visualising the error „surface“

© Matthew W. Crocker Connectionist and Statistical Language Processing 16

Gradient descent continued

� We need calculus to allow us to determine how the error varies when a
particular weight is varied:

∆

∆

∆

∆

∆

w
E

w

w
t a

w

w
t F w a

w

w t F w a F w a a

w F a

out out

out inin

out inin inin in

in

= −

= − −

= −
− ⋅

= − ⋅ ⋅ ′ ⋅ ⋅

=

∑

∑ ∑

ε∂
∂

ε∂
∂

ε
∂

∂
ε

εδ

()

[()]

[()] ()

*

2

2

2

2 δ = −
=

()

*

t a

F
out out

slope of the activation function

Slope: Rate of change of E, with w

Error = (tout - aout)2

Differential of the
activation function with

respect to w, i.e. its slope

9

© Matthew W. Crocker Connectionist and Statistical Language Processing 17

Gradient descent and the delta rule

� The perceptron convergence rule:

� Our revised learning rule, based on gradient descent is:

❑ where F* is the slope of the activation function

� If the activation function is linear, the slope is constant:

❑ where k is a constant representing the learning rate and slope

� This corresponds to the original Delta rule:
❑ It is straight-forward to calculate

❑ Performs gradient descent to the bottom of an the error curve

❑ ∆w is proportional to (tout-aout), so changes get smaller as error is reduced

❑ In 2-layer networks, there is a single minimum which gradient descent
learning is guaranteed to find a solution, it one exists.

∆w ain=εδ

∆w F ain= 2εδ *

∆w k ain= δ

© Matthew W. Crocker Connectionist and Statistical Language Processing 18

Learning with the Sigmoid activation function

� Networks with linear activation functions:
❑ have mathematically well-defined learning capacities

❑ they are known to be limited in the kinds of problems they can solve

� The logistic, or sigmoid, function is:
❑ Non-linear, more powerful

❑ More neurologically plausible

❑ Less well-understood, more difficult to analyse mathematically

� Recall:

a f net
ei i neti

= =
+

()
1

1

10

© Matthew W. Crocker Connectionist and Statistical Language Processing 19

Behaviour of the logistic function

� Deriving the slope of the logistic
function:

� The Delta rule, assuming the
logistic function:

a f net
e

F f net a a

i i net

i out out

i
= =

+
= ′ = −

−()

* () ()

1
1

1

∆

∆

w F a

or

w t a a a a

in

out out out out in

=

= − −

2

2 1

εδ

ε

*

() ()

aout

a o
ut

(1
-a

ou
t)

© Matthew W. Crocker Connectionist and Statistical Language Processing 20

Training a network

� The training phase involves
❑ Presenting an input pattern, and computing the output for the network

using the current connection weights: aout=f(∑in wout,in x ain)

❑ Calculating the error between the desired and the actual output (tout -aout)

❑ Using the Delta rule (appropriate for the activation function):

� One such cycle is called a sweep

� A sweep through each patter is called an epoch

� We can define the global error of the network, as the average error
across all input patterns, k:
❑ One common measure is the

square root of mean error

❑ Squaring avoids positive and negative error cancelling each other out

∆w t a a a aout out out out in= − −η() ()1

rms error =
−∑()

r r
t o

k

k k
k

2

11

© Matthew W. Crocker Connectionist and Statistical Language Processing 21

Training: an example

� Consider the simple feedforward network:
❑ Assume an input pattern: 1 1

❑ Assume a learning rate of 0.1

❑ Assume a sigmoid activation

❑ Desired output is: 1

� Determine the weight changes for 1 sweep:

a2

a0 a1

0.75 0.5

a2

a0 a1

0.7537 0.5037

a f

t a f

w o

w o

2

2 2

20 2 0

21 2 1

1 0 75 1 0 5 0 77

0 77 0 23 0 16 0 037

0 1 0 037 1 0 0037

0 1 0 037 1 0 0037

= × + × =
= − ′ = × =

= = × × =
= = × × =

(. .) .

() (.) . . .

. . .

. . .

δ
ηδ
ηδ

∆
∆

© Matthew W. Crocker Connectionist and Statistical Language Processing 22

The dynamics of weight changes

� Learning rate: predetermined constant

� The error: large error = large weight change

� The slope of the activation function:
❑ The derivative of the logistic is largest for netinputs around 0, and for

activations around .5

❑ Small netinputs co-occur with small weights

❑ Small weights tend to occur early in training

❑ The result: bigger changes during early stages of learning
✚ More resilience in older network: harder to teach new tricks!

� The momentum:
❑ This parameter determines how much of the previous weight change

affects the current weight change

12

© Matthew W. Crocker Connectionist and Statistical Language Processing 23

Calculating Error

� Consider a simple network for learning the AND operation

� After training (1000 sweeps, 250 epochs), we can calculate the global
(RMS) error as follows:

� Observe how error steadily falls during training

0,325RMS:

0,2010,55211 1

0,1120,33401 0

0,0880,29700 1

0,0220,14700 0

(t -o)^2OutputTargetInput

© Matthew W. Crocker Connectionist and Statistical Language Processing 24

Summary

� Learning rules:
❑ Perceptron convergence rule

❑ Delta rule
✚ Depends on the (slope of the) activation function

❑ For 2-layer networks using these rules:
✚ A solution will be found, if it exists

❑ How do we know if network has learned successfully?

� Error:
❑ For learning, we use (tout -aout) to change weights

❑ To characterise the performance of the network as a whole, we need a
measure of global error:
✚ Across all outputs

✚ Across all training patterns

❑ One possible measure is RMS
✚ Another is entropy: doesn’t really matter, since we only need to know if

performance is improving or deteriorating on a relative basis

