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So far …

� Structure of nodes:
❑ Netinput: weight sum of input activations

❑ Output: activation functions, f(netinput)

� Learning Rules:
❑ The Delta rule

❑ The perceptron convergence rule

❑ Gradient descent

� Training:
❑ Global error (RMS)

� Properties of single layer networks:
❑ A solution will be found, if it exists

❑ But, many problems aren’t solveable with single layer networks
✚ E.g. XOR
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Overview

� Characterising the limits of single layer networks
❑ Linearly separable problems only

� Multi-layer networks:
❑ Solution to XOR

❑ Learning “inferences”: the family tree example

❑ Properties of multi-layer networks

� Training networks with hidden layers:
❑ The back-propagation algorithm
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2-D Representation of Boolean Functions

� We can visual the relationship between inputs (plotted in 2-D space)
and the desired output (represented as a line dividing the space):
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Solving XOR with hidden units

� Consider the following network:
❑ 3-layer, feedforward
❑ 2 units in a “hidden”-layer
❑ Hidden and output units are threshold units:

� Representations at hidden layer:

� Problem: current learning rules cannot be used for hidden units:
❑ Why? We don’t know what the “error” is at these nodes
❑ “Delta” requires that we know the desired activation

O

h1 h2

+1 +1

i1 i2

+1+1 -1 -1

θ =1

h2h1

0001  1

1100  1

1011  0

0000  0

TargetHiddenInput

∆w F ain= 2εδ *

© Matthew W. Crocker Connectionist and Statistical Language Processing 6

Backpropagation of Error

(a) Forward propagation of activity :
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Learning in Multi-layer Networks

� The generalised Delta rule:

� Multi-layer networks can, in principle, learn any mapping function:
❑ Not constrained to problems which are linearly separable

� While there exists a solution for any mapping problem,
backpropagation is not guaranteed to find it
❑ Unlike the perceptron convergence rule

� Why? Local minima:
❑ Backprop can get trapped here

❑ Global minimum (solution) is here
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Example of Backpropagation

� Consider the following network, containing
hidden nodes

� Calculate the weight changes for both layers
of the network, assuming targets of: 1  1
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For calculations see (Plunkett & Elman, Ch. 1)
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Calculations (Plunkett & Elman, Ch. 1)

a2

1 1

0.5 0.1

a3 a4

-0.3 0.7

a2 0 65≈ .

a3 0 45≈ . a4 0 6≈ .δ3 0 13= . δ4 0 1= .

δ2 0 007= .

∆w20 0 0007= . ∆w21 0 0007= .

∆w42 0 007= .∆w32 0 008= .
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The Family Tree Problem

� Family trees encode more complex relationships:

� 24 people, 12 relationships
❑ Mother, daughter, sister, wife, aunt, niece (+ masculine versions)

� Training: trained on 100 of 104 possible relationships

� Learned the other 4: e.g. Victoria’s son is Colin

Christopher=Penelope Andrew=Christine

Victoria=JamesMargaret=Arthur Jennifer=Charles

Colin           Charlotte

Roberto=Maria Pierro=Francesca

Lucia=MarcoGina=Emilio Angelo=Tomaso

Alfonso           Sophia

English

Italian
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What does the Network Learn

� E.g. Victoria’s son is Colin:
❑ Input: Victoria & Son

❑ Output: Colin

� In a single-layer network:
❑ Victoria would activate all the people victoria was (known to be) related to

❑ Son would activate all people who are (known to be) sons
✚ Colin would be partially activated, because he is James’ son

❑ But Colin would not have very high activation
✚ James and Arthur are both sons, and related to Victoria

� A solution to this problem requires deduction:
❑ Transitive inference:

✚ Victoria’s husband is James AND James’ son is Colin

✚ THEREFORE Victoria’s son is Colin

� Thus the structure of the tree is learned from exemplars
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Learning family tree relationships

� The network architecture, using hidden units:

� The learned encoding
of people:

1. Active for English

2. Active for older
generation

3. Active for the leaves

4. Encodes right side

5. Active for Italian

6. Encodes left side

Local encoding 
of person2

Learned distributed
encoding of person2

Learned distributed
encoding of person1

Learned distributed
encoding of relation

Input: local
encoding of person1

Input: local
encoding of relation

12 Hidden Units

24 Units 12 Units

6 Units
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Some comments

� Single layer networks (perceptrons)
❑ Can only solve problems which are linearly separable

❑ But a solution is guaranteed by the perceptron convergence rule

� Multi-layer networks (with hidden units)
❑ Can in principle solve any input-output mapping function

❑ Backpropagation performs a gradient descent of the error surface

❑ Can get caught in a local minimum

❑ Cannot guarantee to find the solution

� Finding solutions:
❑ Manipulate learning rule parameters: learning rate, momentum

❑ Brute force search (sampling) of the error surface to find a set of starting
position in weight space
✚ Computationally impractical for complex networks
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Biological plausibility

� Backpropagation requires bi-directional signals
❑ Forward propagation of activation

❑ Backward propagation of error

❑ Nodes must “know” the strengths of all synaptic connections
to compute error: non-local

� Axons are uni-directional transmitters

� Possible justification:
❑ Backpropagation explains what is learned,

❑ Not how it is learned

� Network architecture:
❑ Successful learning crucially depends on the number of hidden units

❑ There is know way to know, a priori, what that number is

� Another solution: use a network with a local learning rule
❑ E.g. Hebbian learning



8

© Matthew W. Crocker Connectionist and Statistical Language Processing 15

Material we have covered includes:

� McLeod, Plunkett & Rolls
❑ Chapter 1: Basic of connectionist processing, intro to Tlearn

❑ Chapter 5:
✚ The perception convergence rule

✚ Linear separability

✚ Gradient descent

✚ Multi-layer networks

✚ Backpropagation

� Elman and Plunkett
❑ Chapter 1: Overview of above + exercises

❑ Chapter 3: Training the Tlearn simulator to leaner Boolean operations
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Tutorial

� Question 5. Assume we allow error of .4 on outputs:
❑ Activation > .6 to corresponds to 1

❑ Activation < .4 to corresponds to 0

❑ What value for RMS guarantees the network has learned to criterion?

❑ Worst (most misleading) case is when error is zero on (I.e. has learned) all
patterns and outside the criterion (has not learned) one:
✚ The network has its lowest error, without having learned all patterns

RMS = + + + =( . )
.
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