Connectionist and Statistical Language Processing

Lecture 3: Multi-layer networks

Matthew W Crocker

Computerlinguistik
Universität des Saarlandes

So far ...

Structure of nodes:
D Netinput: weight sum of input activations

- Output: activation functions, f(netinput)
- Learning Rules:
- The Delta rule
- The perceptron convergence rule
- Gradient descent
- Training:
\square Global error (RMS)
- Properties of single layer networks:

A solution will be found, if it exists
But, many problems aren't solveable with single layer networks + E.g. XOR

Overview

- Characterising the limits of single layer networks
- Linearly separable problems only
- Multi-layer networks:
- Solution to XOR

Learning "inferences": the family tree example
\square Properties of multi-layer networks

- Training networks with hidden layers:
- The back-propagation algorithm

2-D Representation of Boolean Functions

We can visual the relationship between inputs (plotted in 2-D space) and the desired output (represented as a line dividing the space):

Solving XOR with hidden units

- Consider the following network:
- 3-layer, feedforward
- 2 units in a "hidden"-layer
- Hidden and output units are threshold units: $\theta=1$

Representations at hidden layer:

Input	Hidden		Target
	h_{1}	$\mathrm{~h}_{2}$	
00	0	0	0
10	1	0	1
01	0	1	1
11	0	0	0

Problem: current learning rules cannot be used for hidden units:
Why? We don't know what the "error" is at these nodes
\square "Delta" requires that we know the desired activation $\Delta w=2 \varepsilon \delta F^{*} a_{\text {in }}$

Backpropagation of Error

(a) Forward propagation of activity: netinput $_{\text {out }}=\sum w \cdot a_{\text {hidden }}$ $a_{\text {out }}=F\left(\right.$ netinput $\left._{\text {out }}\right)$
(b) Backward propagation of error :
netinput $_{\text {hidden }}=\sum w \cdot \delta_{\text {out }}$
$\delta_{\text {hidden }}=F\left(\right.$ netinput $\left._{\text {hidden }}\right)$

Learning in Multi-layer Networks

$$
\text { The generalised Delta rule: } \left\lvert\, \begin{array}{ll}
\Delta w_{i j}=\eta \delta_{i p} a_{j} & \\
\text { For output nodes : } & \text { For hidden nodes : } \\
\delta_{i p}=f^{\prime}\left(\text { net }_{i p}\right)\left(t_{i p}-a_{i p}\right) & \delta_{i p}=f^{\prime}\left(\text { net }_{i p}\right) \sum_{k} \delta_{k p} w_{k i} \\
\text { where, } f^{\prime}\left(\text { net }_{i p}\right)=a_{i p}\left(1-a_{i p}\right)
\end{array}\right.
$$

- Multi-layer networks can, in principle, learn any mapping function:
\square Not constrained to problems which are linearly separable
- While there exists a solution for any mapping problem, backpropagation is not guaranteed to find it
- Unlike the perceptron convergence rule
- Why? Local minima:
- Backprop can get trapped here

G Global minimum (solution) is here

Example of Backpropagation

Consider the following network, containing hidden nodes

- Calculate the weight changes for both layers of the network, assuming targets of: 11

The generalised Delta rule:
$\Delta w_{i j}=\eta \delta_{i p} a_{j}$
For output nodes:
$\delta_{i p}=f^{\prime}\left(n e t_{i p}\right)\left(t_{i p}-a_{i p}\right)$
For hidden nodes:
$\delta_{i p}=f^{\prime}\left(n e t_{i p}\right) \sum_{k} \delta_{k p} w_{k i}$
where, $f^{\prime}\left(\right.$ net $\left._{i p}\right)=a_{i p}\left(1-a_{i p}\right)$

For calculations see (Plunkett \& Elman, Ch. 1)

Calculations (Plunkett \& Elman, Ch. 1)

$$
\delta_{3}=0.13
$$

The Family Tree Problem

Family trees encode more complex relationships:

- 24 people, 12 relationships
- Mother, daughter, sister, wife, aunt, niece (+ masculine versions)
- Training: trained on 100 of 104 possible relationships

■ Learned the other 4: e.g. Victoria's son is Colin

What does the Network Learn

- E.g. Victoria's son is Colin:
- Input: Victoria \& Son

Output: Colin

- In a single-layer network:

Victoria would activate all the people victoria was (known to be) related to
. Son would activate all people who are (known to be) sons

+ Colin would be partially activated, because he is James' son
But Colin would not have very high activation
+ James and Arthur are both sons, and related to Victoria
A solution to this problem requires deduction:
- Transitive inference:
+ Victoria's husband is James AND James' son is Colin
+ THEREFORE Victoria's son is Colin
Thus the structure of the tree is learned from exemplars

Learning family tree relationships

The network architecture, using hidden units:

- The learned encoding of people:

1. Active for English
2. Active for older generation
3. Active for the leaves
4. Encodes right side
5. Active for Italian
6. Encodes left side

Some comments

Single layer networks (perceptrons)

- Can only solve problems which are linearly separable

But a solution is guaranteed by the perceptron convergence rule

- Multi-layer networks (with hidden units)
- Can in principle solve any input-output mapping function

Backpropagation performs a gradient descent of the error surface
Can get caught in a local minimum

- Cannot guarantee to find the solution

Finding solutions:
Manipulate learning rule parameters: learning rate, momentum

- Brute force search (sampling) of the error surface to find a set of starting position in weight space
+ Computationally impractical for complex networks

Biological plausibility

Backpropagation requires bi-directional signals
\square Forward propagation of activation

- Backward propagation of error
. Nodes must "know" the strengths of all synaptic connections to compute error: non-local
\square Axons are uni-directional transmitters
- Possible justification:

Backpropagation explains what is learned,

- Not how it is learned
- Network architecture:
\square Successful learning crucially depends on the number of hidden units
There is know way to know, a priori, what that number is
- Another solution: use a network with a local learning rule - E.g. Hebbian learning

Material we have covered includes:

McLeod, Plunkett \& Rolls
Chapter 1: Basic of connectionist processing, intro to Tlearn

- Chapter 5:
+ The perception convergence rule
+ Linear separability
+ Gradient descent
+ Multi-layer networks
+ Backpropagation

■ Elman and Plunkett

- Chapter 1: Overview of above + exercises

Chapter 3: Training the Tlearn simulator to leaner Boolean operations

Tutorial

Question 5. Assume we allow error of .4 on outputs:
\square Activation > . 6 to corresponds to 1

- Activation < . 4 to corresponds to 0

What value for RMS guarantees the network has learned to criterion?

- Worst (most misleading) case is when error is zero on (I.e. has learned) all patterns and outside the criterion (has not learned) one:
+ The network has its lowest error, without having learned all patterns

$$
R M S=\sqrt{\frac{\left(0^{2}+0^{2}+0^{2}+.4^{2}\right)}{4}}=0.2
$$

