Connectionist and Statistical Language Processing

Lecture 5: Learning Phonology and Morphology

Matthew W Crocker

Computerlinguistik Universität des Saarlandes

References: McLeod et al, Chapter 8 & 9, pages 155-194 Elman et al, Chapter 3, pages 130-147

Overview

- Reading Aloud: Orthography-Phonology
 - □ S&M, Plaut et al models of adult performance
 - ☐ Good performance on known and unknown words
 - ☐ Models (normal) human behaviour
 - ☐ Fails to replicate the double-dissociation (in acquired dyslexics)
 - ☐ Importance of input and output representations
- Language Acquisition: how do children acquire language
- English past-tense: Morphology
 - ☐ Forming the past tense from the present
 - ☐ Similarity: dual-route models to explain a double dissociation
 - ☐ Connectionist account: a singe mechanism
- Learning vocabulary: lexical development

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Reading Aloud

- Task: produce the correct pronunciation for a word, given its printed form
- Suited to connectionist modelling:
 - ☐ Since we need to learn mappings from one domain (print) to another (sound)
 - Multi-layer networks are good at this, even when mappings are somewhat arbitrary
 - ☐ Human learning is similar to network learning:
 - + I.e. learning takes place gradually, over time
 - + Incorrect attempts are often corrected
- If a network can't model this linguistic task successfully, it would be a serious blow to connectionist modelling. But ...

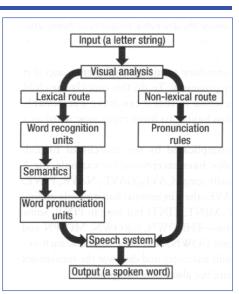
© Matthew W. Crocker

Connectionist and Statistical Language Processing

.

Dual Route Model

- The standard model of reading posits two independent routes leading to pronunciation of a word, because ...
 - ☐ People can effortless pronounce words they have never seen:
 - **◆** SLINT or MAVE
 - ☐ People can pronounce words which break the "rules":
 - + PINT or HAVE
- One mechanism uses general rules for pronunciation
- The other mechanism stores pronunciation information with specific words



© Matthew W. Crocker

Connectionist and Statistical Language Processing

Behaviour of Dual-Route Models

- Consider: KINT, MINT, and PINT
- KINT is not a word:
 - No entry in the lexicon
 - ☐ Can only be pronounced using the "rule-based" mechanism
- MINT is a word:
 - ☐ Can be pronounced using the "rule-based" mechanism
 - ☐ But exists in the lexicon, so also can be pronounced by the "lexical" route
- PINT is a word, but irregular
 - ☐ Can only be correctly pronounced by the lexical route
 - ☐ Otherwise, it would rhyme with MINT

© Matthew W. Crocker

Connectionist and Statistical Language Processing

į

Evidence for the Dual-Route Model

- Evidence from neuropsychology show different patterns of behaviour for two types of brain damage (acquired *after* learning):
- Phonological dyslexia
 - ☐ Symptom: Read words without difficulty, but cannot produce pronunciations for non-words
 - ☐ Explanation: Damage to rule-based route; lexical route intact
- Surface dyslexia
 - □ Symptom: Can pronounce words and non-words correctly, but make errors on irregulars (tendency to regularise)
 - Explanation: Damage to the lexical route; rule-based route intact
- All Dual-Route models share:
 - ☐ a lexicon for known words, with specific pronunciation information
 - ☐ A rule mechanism for the pronunciation of unknown words

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Towards a Connectionist Model

- It is unclear how a connectionist model could naturally implement a dual-route model:
 - □ No obvious way to implement a lexicon to store information about particular words; storage is typically distributed
 - □ No clear way to distinguish "specific information" from "general rules"; only one uniform way to store information, weights of connections
- Examine the behaviour of a standard 2-layer feedforward model
 - ☐ Seidenberg & McClelland (1989)
 - ☐ Trained to pronounce all the monosyllabic words of English
 - ☐ Learning is implemented using the backpropagation algorithm

© Matthew W. Crocker

Connectionist and Statistical Language Processing

.

460 phonological units

200 hidden units

400 orthographic units

Seidenberg and McClelland (1989)

- 2 layer feed-forward model:
 - Distributed representations at input and output
 - ☐ Distributed knowledge within the net
 - ☐ Gradient descent learning
- Input and Output
 - ☐ Inputs are activated by the letters of the words
 - + 20% activated, on average
 - Outputs represent the phonological features
 - + 12% activated, on average
 - Encoding of features does not affect the success
- Processing:

 $netinput_i = \sum_i a_j w_{ij} + bias_i$

☐ Activation of a node is calculated using the logistic function

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Training the Model

Learning

- Weights and bias are initially random
- Words are presented, and outputs are computed
- Connection weights are adjusted based on backpropagation of error

■ Training

- ☐ All monosyllabic words of 3 or more letters (about 3000) words
- ☐ In each epoch, a sub-set was presented
 - + Frequent words appeared more often
- Over 250 epochs, (THE) was presented 230 times, least common 7 times
 - + (THE) is actually 100000 times more likely, but this doesn't change learning

■ Performance

- Outputs were considered correct if the pattern was closer to the correct pronounciation than that of any word
- ☐ After 250 epochs, accuracy was 97%

© Matthew W. Crocker

Connectionist and Statistical Language Processing

9

Results: Seidenberg & McClelland

- The model does successfully learn to map most regular and irregular word forms to their correct pronunciation
 - ☐ It does this without separate routes for lexical or rule based processing
 - ☐ There is no word specific memory
- It does not perform as well as human in pronouncing non-words
- Naming Latency:
 - Experiments have shown that adult reaction times for naming a word is a function of variables such as word frequency and spelling regularity
- The current model cannot directly mimic latencies, since the computation of outputs is constant
- The model can be seen as simulating this observation if we relate the output error score to latency
 - □ Phonological error score is the difference between the actual pattern and the correct pattern
 - Hypothesis: high error should correlate with longer latencies

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Word Frequency Effects

- Common words are pronounced more quickly than uncommon words
 - ☐ This is true for most almost all aspects of human information processing
- Conventional (localist) explanation:
 - Frequent words require a lower threshold of activity for "the word recognition device" to "fire"
 - ☐ Infrequent words require a higher threshold of activity
- In the Seidenberg & McClelland model, naming latency is modelled by the error:
 - ☐ Word frequency is reflected in the training procedure
 - Phonological error is reduced by training, and therefore lower for high frequency words
- The explanation of latencies in terms of error follows directly from the network's architecture and the training regime

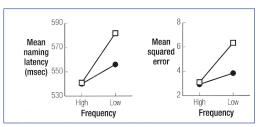
© Matthew W. Crocker

Connectionist and Statistical Language Processing

11

Frequency x Regularity

- In addition to faster naming of frequent words, human subjects exhibit:
 - ☐ Faster pronunciation of regular words (e.g GAVE or MUST) than irregular words(e.g. HAVE or PINT)
 - But, this effect interacts with frequency: it is only observed with low frequency words
- For regulars (filled circle) we observe a small effect of frequency
 □ It takes slightly longer to pronounce the low frequency regulars
- For irregulars (open square) we observe a large effect of frequency
- The model precisely mimics this pattern of behavior in the error
- 2-route: the confusion of the lexical and rule outcome requires resolution
 - Lexical route wins faster for high frequency words

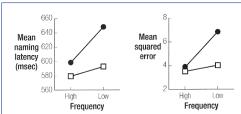


© Matthew W. Crocker

Connectionist and Statistical Language Processing

Frequency x Neighborhood Size

- The "neighborhood size" of a word, is defined as the number of words that differ by changing one letter.
- Neighborhood size has been shown to also affect naming latency much the same way as regularity:
 - □ Not much influence for high frequency words
 - ☐ Low frequency words with small neighborhoods (filled circles) are read much more slowly than words with large neighborhoods (open squares)
- Shows "cooperation" of the information learnt in response to different(but similar) inputs
- Again, the connectionist model directly predicts this
- The 2 route model requires a more ad hoc explanation, grouping across localist representations of the lexicon

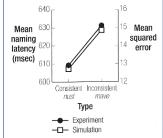


© Matthew W. Crocker

Connectionist and Statistical Language Processing

Spelling-to-Sound Consistency

- Consistent spelling patterns: _UST
 - ☐ All words have the same pronunciation
- Inconsistent patterns are those with more than one: AVE
- Observation: adult readers produce pronunciations more quickly for non-words derived from consistent patterns (NUST) than from
 - inconsistent patterns (MAVE)
- This is difficult for 2-route models:
 - ☐ Since both are processed by the non-lexical route
 - Consistent and inconsistent rules would need to be distinguished
- The error in the connectionist model predicts this latency effect perfectly



© Matthew W. Crocker

Connectionist and Statistical Language Processing

Summary of Seidenberg & McClelland (1989)

- What has the model achieved
 - ☐ The model is a single mechanism with no lexical entries or explicit rules
 - Response to an input is a function of the networks entire experience
 - + Reflects previous experience on a particular word
 - + Experience with words resembling that string
- E.g. <u>specific</u> experience with HAVE is sufficient to overcome the <u>general</u> information that _AVE is usually a long vowel
- The network can produce a plausible pronunciation for MAVE, but error is introduced by experience with inconsistent words like HAVE
- Performance
 - □ 97% accuracy on pronouncing learned words
 - ☐ Models: frequency & interaction with regularity, neighborhood, consistency
- Limitations: It is not as good as humans at
 - ☐ Reading non-words (model get 60%, humans 90%)
 - ☐ Lexical decision (FRAME is a word, but FRANE is not)

© Matthew W. Crocker

Connectionist and Statistical Language Processing

15

Representations are important

- Position specific: for inputting words of maximum length N:
 - N groups of 26 binary inputs = word
- But consider: LOG, GLAD, SPLIT, GRILL, CRAWL
 - ☐ The model needs to learn the correspondence between L and ///
 - ☐ But L always appears in different positions
 - Learning different pronunciations for different positions should be straightforward
 - ☐ Allignment: letters and phonemes are not in 1-to-1 correspondence
- Problem: non-position-specific loses important order information:
 - ☐ RAT = ART = TAR
- Solution: S&M decompose word and phoneme strings into "triples"
 - ☐ FISH = FI SH ISH FIS
 - ☐ Each input is associated with 1000 random triples
 - ☐ Active is that triple appears in the input word

Wickelfeatures

- S&M still suffer some specific effects
 - ☐ Information learned about a letter in one context is not easily generalised

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Improving the Model: Plaut et al (1996)

- Plaut et al (1996) solution: non-position-specific + linguistic constraints
 - ☐ Monosyllabic word = onset + vowel + coda
 - ☐ Strong constraints on order within these clusters
 - + E.g, if 't' and 's' are together, 's' always precedes 't'
 - ☐ Only one set of grapheme-to-phoneme units is required for the letters in each group
 - Correspondences can be pooled across different words, even when letters appear in different positions
- Input representations:
 - ☐ Onset: first letter or consonant cluster (30)
 - + y s p t k q c b d g f v j z l m n r w h ch gh gn ph ps rh sh th ts wh
 - Vowel (27)
 - + e I o u a y ai au aw ay ea ee ei eu ew ey ie oa oe oi oo ou ow oy ue ui uy
 - □ Coda: final letter or consonant cluster (48)
 - + h r I m n b d g cxf v j s z p t k q bb ch ck dd dg ff gg gh gn ks ll ng nn ph pp ps rr sh sl ss tch th ts tt zz u e es ed
- Monosyllabic words are spelt by choosing one or more candidates from each of the 3 possible groups:
 - ☐ THROW: ('th' + 'r'), ('o'), ('w')

© Matthew W. Crocker

Connectionist and Statistical Language Processing

17

Output representations

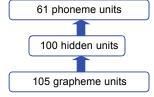
- Phonology: groups of mutually exclusive members
 - ☐ Onset (23)
 - + s S C
 - + zZjfvTDpbtdkgmnh
 - + Irwy
 - Vowel (14)
 - + a e i o u @ ^ A E I O U W Y
 - □ Coda (24)
 - +r sz +l fvpk
 - + m n N
 - + b g d SZTDCj
 - + ps ks ts
- "Scratch" = 's k r a ____ C'

© Matthew W. Crocker

Connectionist and Statistical Language Processing

The network architecture

- The architecture of the Plaut et al network:
 - ☐ The are a total 105 possible orthographic onsets, vowels, and codas
 - ☐ The are 61 possible phonological onsets, vowels and codas



- Performance of the Plaut *et al* model:
 - Succeeds in learning both regular and exception words
 - Produces the frequency x regularity interaction
 - ☐ Demonstrates the influences of frequency and neighbourhood size
- What is the performance on non-words?
 - ☐ For consistent words (HEAN/DEAN): model (98%) versus human (94%)
 - ☐ For inconsistent words (HEAF/DEAF/LEAF): model (72%), human (78%)
 - + This reflects production of regular forms: both human & model produced both
- Highlights the importance of encoding ... how much knowledge is implicit in the coding scheme

© Matthew W. Crocker

Connectionist and Statistical Language Processing

19

Summary

- Word frequencies:
 - Seidenberg & McClelland presented training materials according to the log frequencies of words
 - ☐ People must deal with absolute frequencies which might lead the model to see low frequency items too rarely
 - ☐ Plaut et al model, however, succeeds with absolute frequencies
- Representations:
 - ☐ The right encoding scheme is essential for modelling the findings
 - + How much linguistic knowledge is "given" to the network by Plaut's encoding?
 - ☐ They assume this knowledge could be partially acquired prior to reading
 - + I.e. children learn to pronounce "talk" before they can read it
 - ☐ Doesn't scale to polysyllabic words
- Doesn't not explain the double dissociation:
 - ✓ Surface dyslexics (can read exceptions, but not non-words)
 - X Phonological (can pronounce non-words, but not irregulars)

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Connectionist models of Acquisition

- Symbolic models emphasise the learning of rules and exceptions
- Connectionist models have no direct correlate to such mechanisms
 - ☐ Knowledge is stored in a distributed weight matrix
- Models of learning:
 - ☐ Start state of the cognitive system
 - □ Learning mechanism
 - □ Training environment
 - Acquired skill
- Connectionist models provide a opportunity to model the learning process itself, not just the resulting acquired skill
 - We can test connectionist models against developmental data, at various points during learning
 - Discontinuities in performance (sudden changes in behaviour) can be explained by "emergent properties" of a single, continuous mechanism

© Matthew W. Crocker

Connectionist and Statistical Language Processing

21

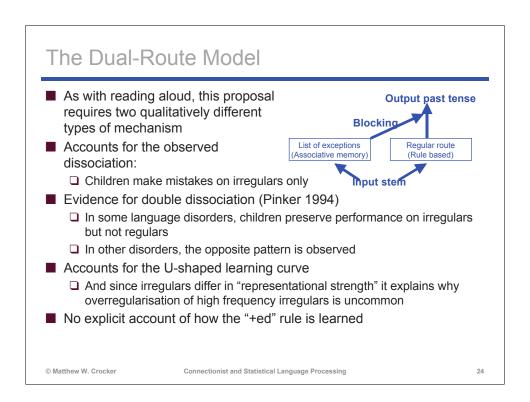
Learning the Past Tense

- The problem of past tense formation:
 - □ Regular formation: stem + 'ed'
 - ☐ Irregulars do show some patterns:
 - + No-change: hit » hit (all end in a 't' or 'd')
 - + Vowel-change: ring » rang,. Sing » sang (rhymes often share vowel-change)
 - + Arbitraty: go » went
- Young children often form the past tense of irregular verbs (like GO) by adding ED: <u>overregularisations</u>
 - ☐ "go"+"ed" » "goed"
- This suggests incorrect application of a <u>learned rule</u>, not just rote learning or imitation
- Overregularisations often occur after the child has already succeeded in producing the correct irregular form: "went"
- Thus we need to explain this "U-shaped" learning curve

© Matthew W. Crocker

Connectionist and Statistical Language Processing

A Symbolic Account: Dual-Route Model ■ General pattern of behaviour: ☐ Early: children learn past tenses by rote (forms are stored in memory) ☐ Later: recognise regularities, add general device to add 'ed' suffix ☐ Now: no need to memorise forms, but this leads to incorrect generalisation of the regular rule to irregulars ☐ Finally: distinguish which forms can be generated by the rule, and which must be stored (and accessed) as exceptions ■ A Dual Route Model: Output past tense Errors result from the transition from rote learning to rule-governed **Blocking** □ Recovery occurs after sufficient exposure to irregulars: List of exceptions Regular route + Increased "strength" (Associative memory) (Rule based) + Frequency based + Faster recovery for frequent irregulars Input stem © Matthew W. Crocker Connectionist and Statistical Language Processing 23



Language Acquisition

- Perhaps the notion of inflection is innately specified, and need not itself be learned:
 - ☐ The inflectional mechanism is triggered by the environment or maturation
 - ☐ Then the exact (language specific) manifestation must be learned
- Criticisms:
 - ☐ Early learning tends to be focussed on irregular verbs
 - ☐ Irregular sub-classes (hit, sing, ring) might lead to incorrect rule learning
 - + These do occurs, but typically late in learning
 - + How are good/spurious rules distinguished and selected
 - ☐ English is unusual in possessing a large class of regular verbs
 - + Only 180 irregulars
 - ☐ Only 20% of plurals in Arabic are regular
 - □ Norwegian has 2 regular forms for verbs: 3 route model?

© Matthew W. Crocker

Connectionist and Statistical Language Processing

25

Towards a Connectionist Model

- No distinct mechanisms for regular and irregular forms
- No innately specified maturation stage or rules to be triggered
- Parsimonious:
 - ☐ Simplifies the structural complexity of the starting state
 - ☐ Learning exploits the structure of the learning environment
- Rummelhart and McClelland (1986)
 - ☐ 1st attempt to model this problem (or any development system)
 - ☐ Modelled U-shaped learning, but heavily criticised (Pinker & Prince 1988)
- Plunkett & Marchman
 - ☐ Use a feed-forward network, one hidden layer

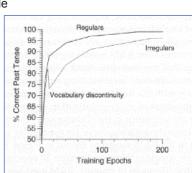
© Matthew W. Crocker

Connectionist and Statistical Language Processing

:6

Rummelhart and McClelland (1986)

- A single-layer feed-forward network (perceptron)
 - ☐ Input: is a phonological representation of the stem (wickelfeatures)
 - ☐ Output: is a phonological representation of the past tense (wickelfeatures)
 - ☐ Trained using the perceptron learning rule
- Training:
 - ☐ First trained on 10 high frequency verbs (8 irregular, 2 regular), 10 epochs
 - □ Perfect performance
 - ☐ Then 420 (medium frequency) verbs (80% regular), 190 epochs
 - Early in training, shows tendency to overregularise, i.e. modelling stage 2
 - □ End of training, exhibits "adult" (near perfect) performance
 - ☐ Generalised reasonably well to 86 low frequency verbs in test set



© Matthew W. Crocker

Connectionist and Statistical Language Processing

27

Performance of R&M (1986)

■ Criticisms:

- ☐ Problems with representation using wickelphones/wickelfeatures
- ☐ U-shape performance depends on sudden changes from 10-420 in the training regime
- ☐ Rote learning of first 10 verbs: there was no generalisation to novel stems after 10 epochs
- ☐ Most of the 410 new verbs are regular, overwhelming the network and leading to overregularisation
- Justification: children do exhibit vocabulary spurt at end of year 2
 - ☐ But overregularisation errors typically occur at end of year 3
 - Vocabulary spurt is mostly due to nouns
- Single layer Perceptron only works for linearly separable problems
 - ☐ Plunkett & Marchman (1991) show residual error remains after extensive training
 - Suggests a hidden-layer network

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Plunkett and Marchman (1993)

- A standard feed forward network with one hidden layer
- Maps a phonological representation of the stem to a phonological representation of the past tense
- Initially, the model is trained to learn the past tense of 10 regular and 10 irregular verbs
 - ☐ Represents currents estimates of children's early vocabulary
- Training proceeds using the standard backprop algorithm, in response to error between actual and desired output
 - ☐ Is this plausible?
- Learning must configure the network for both regulars and irregulars
 - ☐ Consider: hit » hit, but pit » pitted
 - We know multi-layer networks can do this, but considerable training may be required

© Matthew W. Crocker

Connectionist and Statistical Language Processing

29

20 phonological units

30 hidden units

20 phological units

Plunkett and Marchman (continued)

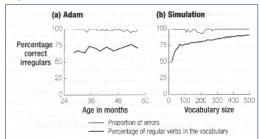
- Training:
 - ☐ Initial period of 10 regular and 10 irregular verbs
 - ☐ Then vocabulary was gradually increased, to mimic the gradual uptake of words in children
 - ☐ Total: 500 word stems, 90% regular (similar to the relative frequency of regulars in English)
 - ☐ Higher frequency verbs were introduced earlier in training, and so were also presented to the network more often
 - + Irregulars are more frequent, so appear more often in training
 - + This is essential, otherwise the regulars swamp the network
 - + Arguably more accurately reflects the childs learning environment
- The final model successfully learned the 500 verbs in the training set
 - ☐ But errors were made *during* the learning phase
 - ☐ Caused by interference between mappings for regulars and irregulars before mature connection weights have been discovered

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Performance of P&M

- Early acquisition is characterised by a period of error free performance
- Low overall rate (5-10%) of overregularisation errors
- Overregularisation is not restricted to a particular period of development
- Common irregulars do not exhibit overregularisation (e.g. 'goed' is rare)
- Errors are phonologically conditioned: No change verbs (hit) are robust to overregularisation (e.g 'hitted' is rare)
- Only a very small number of irregularisation errors are observed (e.g. where the network produces 'bat' for 'bite')
- Generally compatible with the results of studies by Marcus et al (1992):
 - □ Early performance is error free, and then low error is more or less random



© Matthew W. Crocker

Connectionist and Statistical Language Processing

31

Discussion

- Performance is close tied to the training environment:
 - Onset of overregularisation is closely bound to a "critical mass" of regular verbs entering the child vocabulary
 - ☐ This subsides as the training learns the final solution for the task
- Highly sensitive to training environment:
 - □ Requires more training on arbitrary irregulars (go/went), which are highly frequent in the language
 - ☐ More robust for no-change verbs (hit, put) which are more numerous (type) and less frequent (token)
- Models the frequency x regularity interaction:
 - $\hfill \Box$ Faster reaction time for high frequency irregulars than low frequency ones
 - No advantage for regulars
- Differential behaviour for regulars and irregulars result from lesioning
- Suggests it is dangerous to infer dissociations in mechanisms due to observed dissociations in behaviour
 - ☐ Critical mass effect can have the appear of a distinct mechanism

© Matthew W. Crocker

Connectionist and Statistical Language Processing

Criticism

- We know multi-layered networks can learn such mappings in general; not proof that children use the same type of mechanism
- Pinker & Prasada argue that the (idiosyncratic) statistical properties of English help the model:
 - ☐ Regulars have low token frequency but high type frequency: facilitates the generalisation across this class of items
 - ☐ Irregulars have low type frequency but high token frequency: facilitates rote learning mechanism for these words
- They argue no connectionist model can accommodate default generalisation for a class which has both low type and token frequency
 □ Default inflection of plural nouns in German appear to have this property
- No explanation of the double-dissociation observed by Pinker (1994)

© Matthew W. Crocker

Connectionist and Statistical Language Processing

33

Main conclusions

- Dissociations in performance, do not necessarily entail distinct mechanisms:
 - Reading aloud: a singe mechanism explains regular and irregular pronunciation of monosyllabic rules
 - ☐ Past tense: a single model of regular and irregular past tense formation
- But, explaining double dissociations is difficult
 - ☐ Has been shown to be possible on small networks, but unclear if larger (more plausible) networks can demonstrate double dissociations
- Connectionist models excel at finding structure and patterns in the environment: "statistical inference machines"
 - ☐ The start state for learning may be relatively simple, unspecified
 - ☐ Necessary constraints to aid learning come from the environment
- Can such models scale up? Are they successful for languages with different distributional properties?
- Tutorial: The English Past Tense, chapter 11 of Plunkett & Elman

© Matthew W. Crocker

Connectionist and Statistical Language Processing