
1

Connectionist and Statistical
 Language Processing

Lecture 7: Learning Linguistic Structure
in Simple Recurrent Networks

Matthew W Crocker

Computerlinguistik

Universität des Saarlandes

Reading: J Elman (1991). Distributed Representations, simple recurrent networks,
and grammatical structure. Machine Learning.
J Elman (1993). Learning and development in neural networks: the importance
of starting small. Cognition, 48:71-99.
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Summary of Elman 1990

n Some problems change their nature when expressed as temporally:
q E.g. sequential XOR developed frequency sensitive units

n Time varying error signal can be a clue to temporal structure:
q Lower error in prediction suggests structure exists

n Increased sequential dependencies don’t result in worse performance:
q Longer, more variable sequences were successfully learned

q Also, the network was able to make partial predictions (e.g. “consonant”)

n The representation of time and memory is task dependent:
q Networks intermix immediate task, with performing a task over time

q No explicit representation of time: rather “processing in context”

q Memory is bound up inextricably with the processing mechanisms

n Representation need not be flat, atomistic or unstructured:
q Sequential inputs give rise to “hierarchical” internal representations

“SRNs can discover rich representations implicit in many tasks,
including structure which unfolds over time”
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Challenges for a connectionist account

n What is the nature of the linguistic representations?
q Localist representations seem too limited (fixed and simplistic)

q Distributed are poorly understood, but greater capacity, can be learned

n How can complex structural relationships such as constituency be
represented? Consider “noun” versus “subject” versus “role”:
q The boy broke the window

q The rock broke the window

q The window broke

n How can the “open-ended” nature of language be accommodated by a
fixed resource system?
q Especially problematic for localist representations

n In a famous article, Fodor & Pylyshyn argue that connectionist models:
q Cannot encode for the fully compositional structure/nature of language

q Cannot provide for the open-ended generative capacity

© Matthew W. Crocker Connectionist and Statistical Language Processing 4

Learning Linguistic Structure

n Construct a language, generated by a grammar which enforces diverse
linguistic constraints:
q Subcategorisation

q Recursive embedding

q Long-distance dependencies

n Training the network:
q Prediction task

q Structure of the training data is necessary

n  Assess the performance:
q Evaluation of predictions (as in Elman 1990), not RMS error

q Cluster analysis? Only really informs us of the similarity of words, not the
dynamics of processing

q Principle component analysis: permits us to investigate the role of specific
hidden units
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Learning Constituency: Elman (1991)

n So far, we have seen how SRNs can
find structure in sequences

n How can complex structural relationships
such as constituency be represented?

n The Stimuli:
q Lexicon of 23 items

q Encoded orthogonally, in 26 bit vector

n Grammar:
q S Ô NP VP “.”

q NP Ô PropN | N | N RC

q VP Ô V (NP)

q RC Ô who NP VP |who VP (NP)

q N Ô boy | girl | cat | dog | boys | girls | cats | dogs

q PropN Ô John | Mary

q V Ô chase | feed | see | hear | walk |live | chases | feeds | sees | hears | walks | lives

q Number agreement, verb argument patterns

10 units 70 units

10 units

70 units

26 units

26 units
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Training

n Verb subcategorization
q Transitives: hit, feed

q Optional transitives: see, hear

q Intransitives: walk, live

n Interaction with relative clauses:
q Dog who chases cat sees girl

q Dog who cat chases sees girl

q Agreement can span arbitrary distance

q Subcategorization doesn’t always hold (superficially)

n Recursion: Boys who girls who dogs chase see hear

n Viable sentences: where should end of sentence occur?
q Boys see (.) dogs (.) who see (.) girls (.) who hear (.) .

n Words are not explicitly encoded for number, subcat, or category
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Training

n At any given point, the training set contained 10000 sentences, which
were presented to the network 5 times

n The composition of sentences varied over time:
q Phase 1: Only simple sentence (no relative clauses)

: 34,605 words forming 10000 sentences

q Phase 2: 25% complex and 75% simple
: Sentence length from 3-13 words, mean: 3.92

q Phase 3: 50/50, mean sentence length 4.38

q Phase 4: 75% complex, 25% simple, max: 16, mean: 6

n WHY?: Pilot simulations showed the network was unable to learn the
task when given the full range of complex data from the beginning.

n Focussing on simpler data first, the network learned quickly, and was
then able to learn the more complex patterns.

n Earlier simple learning, usefully constrained later learning
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Performance

n Weights are frozen and test on a novel set of data (as in phase 4).

n Since the solution is non-deterministic, the networks outputs were
compared the context dependent likelihood vector of all words
following the current input (as done in the previous simulation)
q Error was 0.177, mean cosine: 0.852

q High level of performance in prediction

n Performance on Specific Inputs

n Simple agreement:

     BOY .. BOYS ..
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Subcategorization

n Intransitive: “Boy lives …”
q Must be a sentence, period

expected

n Optional: “Boy sees …”
q Can be followed by either a period,

q Or some NP

n Transitive: “Boy chases …”
q Requires some object
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Processing complex sentences

n “Boys who mary chases feed cats”
q Long distance

: Agreement: Boys … feed

: Subcategorization: chases is transitive but in a relative clause

: Sentence end:all outstanding “expectations” must be resolved
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Prediction reconsidered

n SRNs are trained on the prediction task:
q “Self-supervised learning”: no other teacher required

n Prediction forces the network to discover regularities in the temporal
order of the input

n Validity of the the prediction tasks:
q It is clearly not the “goal” of linguistic competence

q But there is evidence that people can/do make predictions

q Violated expectation results in distinct patterns of brain activity (ERPs)

n If children do make predictions, which are then falsified, this might
constitute an indirect form of negative evidence, required for language
learning.
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Results

n Learning was only possible when the network was forced to begin with
simpler input
q This effectively restricted the range of data to which the networks were

exposed during initial learning

q Contrasts with other results showing the entire dataset is necessary to
avoid getting stuck in local minima (e.g. XOR)

n This behaviour partially resembles that of children:
q Children do not begin by mastering language in all its complexity

q They begin with simplest structures, incrementally building their “grammar”

n But the simulation achieves this by manipulation the environment:
q This does not seem an accurate model of the situation in which children

learn language

q While adults do modify their speech, it is not clear they make such
grammatical modifications

q Children hear all exemplars of language from the beginning
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General results

n Limitations of the simulations/results:
q Memory capacity remains un-probed

q Generalisation is not really tested
: Can the network inferentially extend what is know about the types of NPs

learned to NPs with different structures

q Truly a “toy” in terms of real linguistic complexity and subtlety
: E.g. lexical ambiguity, verb-argument structures, structural complexity and

constraints

n Successes
q Representations are distributed, which means less rigid resource bounds

q Context sensitivity, but can respond to contexts which are more
“abstractly” defined

: Thus can exhibit more general, abstract behaviour

: Symbolic models are primarily context insensitive

n Connectionist models begin with local, context sensitive observations

n Symbolic models begin with generalisation and abstractions
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A Second Simulation

n While it’s not the case that the environment changes, it true that the
child changes during the language acquisition period

n Solution:  keep the environment constant, but allow the network to
undergo change during learning

n Incremental memory:
q Evidence of a gradual increase in memory and attention span in children

q In the SRN, memory is supplied by the “context” units

q Memory can be explicitly limited by depriving the network, periodically,
access to this feedback

n In a second simulation, training began with limited memory span which
was gradually increased:
q Train began from the outset with the full “adult” language (which was

previously unlearnable)
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Training with Incremental Memory

n Phase 1:
q Training on corpus generated from the entire grammar

q Recurrent feedback was eliminated after every 3 or 4 words, by setting all
context units to 0.5

q Longer training phase (12 epochs, rather than 5)

n Phase 2:
q New corpus (to avoid memorization)

q Memory window increased to 4-5 words

q 5 epochs

n Phase 3: 5-6 word window
n Phase 4: 6-7 word window

n Phase 5: no explicit memory limitation implemented

n Performance: as good as on the previous simulation
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Analysing the solution

n Hidden units permit the network to derive a functionally-based
representation, in contrast to a form-based representation of inputs

n Various dimensions of the internal representation were used for:
q Individual words, category, number, grammatical role, level of embedding,

and verb argument type

q The high-dimensionality of the hidden unit vectors (70 in this simulation)
makes direct inspection difficult

n Solution: Principle Component Analysis can be used to identify which
dimensions of the internal state represent these different factors
q This allows us to visualise the movement of the network through a state

space for a particular factor, by discovering which units are relevant
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Principle Component Analysis

n Suppose we’re interested in analysing a network with 3 hidden units and 4
patterns of activation, corresponding to: boysubj, girlsubj, boyobj, girlobj

n Cluster analysis might reveal the following structure:
q But nothing of the subj/obj representation is revealed

n If we look at the entire space, however, we can
get more information about the representations:

n Since visualising more than 3 dimensions is difficult, PCA permits us to identify
which “units” account for most of the variation.

q Reveals partially “localist” representations in the “distributed” hidden units
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Examples of Principle Components: 1

n Agreement
q Boy who boys chase chases boy

q Boys who boys chase chase boy

n The 2nd PCA encodes agreement
in the main clause
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Examples of Principle Components: 2

n Transitivity
q Boy chases boy

q Boy sees boy

q Boy walks

n Two principle components: 1 & 3

n PCA 1:
q Nouns on the right

q Verbs left

n PCA 2:
q Intrans: low

q Optional trans: mid

q Transitive: high
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Examples of Principle Components: 3

n Right embedding:
q Boy chases boy

q Boy who chases boy
chases boy

q Boy chases boy who
chases boy

q Boy chases boy who chases
boy who chases boy

n PCA 11 and 1:
q “Embedded clause are

shifted to the left”

q “RCs appear nearer the
noun they modify”
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PCA analysis of “Starting Small”

n We can use “Principle Component Analysis” to examine particularly
important dimensions of the networks solutions more globally:
q Sample of the points visited in the hidden unit space as the network

processes 1000 random sentences

n The results of PCA after training:

 Training on the full data set Incremental training

The right plot reveals are more clearly “organised” use of the state space
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Comments

n To solve the task, the network must learn the sources of variance
(number, category, verb-type, and embedding)

n If the network is presented with the complete corpus from the start:
q The complex interaction of these factors, long-distance dependencies,

makes discovering the sources of variance difficult

q The resulting solution is imperfect, and internal representation don’t reflect
the true sources of variance

n When incremental learning takes place (in either form):
q The network begins with exposure to only some of the data

: Limited environment: simple sentences only

: Limited mechanisms: simple sentences + noise (hence longer training)

q Only the first 3 sources of variance, and no long-distance dependencies

n Subsequent learning is constrained (or guided) by the early learning of,
and commitment to, these basic grammatical factors
q Thus initial memory limitations permit the network to focus on learning the

subset of facts which lay the foundation for future success
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The importance of starting small

n Networks rely on the representativeness of the training set:
q Small samples may not provide sufficient evidence for generalisation

: Possibly poor estimates of the populations statistics

: Some generalisations may be possible from a small sample, but are later ruled out

q Early in training the sample is necessarily small

n The representation of experience:
q Exemplar-based learning models store all prior experience, and such early data can

then be re-accessed to subsequently help form new hypotheses

q SRNs do not do this: each input has it’s relatively minor effect on changing the
weights (towards a solution), and then disappears. Persistence is only in the change
made to the network.

n Constraints on new hypotheses, and continuity of search:
q Changes in a symbolic systems may lead to suddenly different solutions

: This is often ok, if it can be checked against the prior experience

q Gradient descent learning makes it difficult for a network to make dramatic changes
in its solution: search is continuous, along the error surface

q Once committed to an erroneous generalisation, the network might not escape from
a local minima
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Starting small (continued)

n Network are most sensitive during the early period of learning:
q Non-linearity (the logistic activation function) means that weight

modifications are less likely as learning progresses
: Input is “squashed” to a value between 0 and 1

: Non-linearity means that the function is most sensitive for inputs around 0
(output is 0.5)

: Nodes are typically initialised randomly about 0, so netinput is also near 0

: Thus the network is highly sensitive

q Sigmoid function become “saturated” for large +/- inputs
: As learning proceeds units accrue activation

: Weight change is a function of the error and slope of the activation function

: This will become smaller as units activations become saturation, regardless of
how large the error is

q Thus escaping from local minima becomes increasingly difficult

n Thus most learning occurs when information is least reliable
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Conclusions

n Learning language is difficult because:
q Learning linguistic primitives is obscured by the full complexity of

grammatical structure

q Learning complex structure is difficult because the network lacks
knowledge of the basic primitive representations

n Incremental learning shows how a system can learn a complex system
by having better initial data:
q Initially impoverished memory provides a natural filter for complex

structures early in learning so the network can learn the basic forms of
linguistic regularities

q As the memory is expanded, the network can use what it knows to handle
increasingly complex inputs

q Noise, present in the early data, tends to keep the network in a state of
flux, helping it to avoid committing to false generalisations
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Summary of SRNs …

n Finding structure in time/sequences:
q Learns dependencies spanning more than a single transition

q Learns dependencies of variable length

q Learns to make partial predictions from structure input
: Prediction of consonants, or particular lexical classes

n Learning from various input encodings:
q Localist encoding: XOR and 1 bit per word

q Distributed:
: Structured: letter sequences where consonants have a distinguished feature

: Random: words mapped to random 5 bit sequence

n Learns both general categories (types) and specific behaviours
(tokens) based purely on distributional evidence

n What are the limitations of SRNs
q Do they simply learn co-occurrences and contingent probabilities?

q Can they learn more complex aspects of linguistic structure?
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Summary

n Implicit representation of time, reflected in the dynamic behaviour of
the network: not explicitly encoded.

n The importance of starting small:
q Learning the more complex language was only possible by first learning

simpler aspects of the grammar

n Outstanding problems:
q Is grammatical structure really being learned?
q Full linguistic complexity

: Ambiguity: lexical, syntactic, semantic
: Structural: subjacency, islands, extraction, …
: Scale: large lexicons, large structures

n Statistical/Probabilistic Models
q Connectionist models have a highly probabilistic nature:

: Learn regularities in a way which is sensitive to and reflect frequency

q We can model language by directly applying probabilistic theory
q We can combine symbolic and probabilistic approaches to achieve hybrid

symbolic/sub-symbolic systems.


