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Abstract (1) Anne: "Please give me the coffee, R2D2.”
(2) R2D2: "Okay.”
Situated dialogue is usually tightly integrated with be- (3) R2D2: "Where is the coffee, Anne?”
havior planning, physical action and perception. This (4) Anne: "The coffee is in the kitchen.”
paper presents an algorithmic framework, Continual (5) R2D2: "Thanks, Anne.”
Collaborative Planning (CCP), for modeling this kind (6) R2D2: "Please open the kitchen door, Anne.”
of integrated behavior and shows how CCP agents nat- (7) Anne: "Okay.”
urally blend physical and communicative actions. For (8) Anne opens the kitchen door.
experiments with conversational CCP agents we have (9) R2D2: "Thanks for opening the kitchen door, Anne.”
developed MAPSIM, a software environment that can (10) R2D2 moves to the kitchen.
generate multiagent simulations from formal multia- (11) R2D2 takes the coffee.
gent planning problems automatically. = MAPSIM (12) R2D2 moves to the living room.
permits comparison of CCP-based dialogue strategies (13) R2D2 brings Anne the coffee.
on a wide range of domains and problems without (14) Anne: "Thanks for bringing me the coffee, R2D2.
domain-specific programming. Despite their linguis-

tic capabilities being limited MAPSIM agents can al-
ready engage in fairly realistic situated dialogues. Our ] ) o ]
ongoing work is taking this approach from simulation ~ Figure 1: Mixed-initiative dialogue between two ar-

to real human-robot interaction. tificial agents in MAPSIM Householddomain).

1 Introduction

When several agents are situated in a common enviing (CCP) and show how it can be used for situated
ronment they usually interact physically as well aslialogue modeling. Interestingly, the role of com-
verbally. Verbal interactions in such environmentsmunication in CCP is twofold: A dialogue move
i. e. situated dialogues, botéflectthe past anehflu- can be part of the collaboratiyglanning process;
encethe future physical behavior of the agents. Adiowever, it is also th@xecutionof a communica-
a result, situated dialogue is continualhgerleaved tive action and, just like the execution of a physical
with behavior planning, physical action and sensingaction, it changes the “world” in ways that may lead
But when and why do agents switch between thede previously unforeseen changes in plans and, con-
rather distinct activities? In particular, how is dia-sequently, additional interactions. Since goals and
logue triggered by physical events and how, in turrplans of agents are continually revised, CCP mod-
does it constrain them? els very dynamic interactions that naturally include
In this paper, we approach these questions fromixed-initiative subdialogues and interleaved phys-
the perspective ahultiagent planningSpecifically, ical and communicative actions.
we describe situated dialogue as Distributed Contin- Approaches to situated dialogue can only be eval-
ual Planning (DCP) (DesJardins et al., 1999), i. e. asated in environments where agents are actually
a process that integrates planning, acting and peituated, i.e. where they can not only communi-
ception with communication. We present a novetate, but also perceive and act. Because we want
DCP algorithm called Continual Collaborative Planto evaluate CCP (and related approaches) over a



wide range of application domains we have deve Bill goes home.
oped MAPSIM, a simulation environment that turng (2) Bill: "Please bake the pizza, Oven.”
formal multiagent planning problems into multia- ($) 9ven: "Okay~
. . . (4) Oven bakes the pizza.
gent simulations. Crucially, MAPSIM creates thg (5) Oven: "I have finished baking the pizza, Bill"
simulation as well as a domain-specific lexicon for (g) g!“f :;lhanksgqr baklnghthe.plzzaé(z)l\jlgq-"
natural-language dialogueutomaticallywhen an- ESg RoD2: ?gigy_,,r 'ng me the pizza, '
alyzing the planning domain. Since no domain: (9) R2D2 brings Bill the pizza.
specific programmingis needed MAPSIM can be | (10) Bill: "Thanks for bringing me the pizza, R2D2."
- . . (11) Bill eats the pizza.

used to quickly evaluate dialogue strategies on |a
wide range of domains and problems.

The paper is structured as follows: We first infigyre 2: Dialogue between three artificial agents in
troduce our multiagent planning formalism and dispapSIM (Pizzadomain).
cuss its suitability for dialogue planning. Then we
present the CCP algorithm. In the subsequent sec-
tions we describe MAPSIM and analyze CCP diathe closed world assumption of classical planning:
logues in several domains. In the final sections wehat is not known to be true f&lse. This concept
discuss related work and indicate our ongoing efean also be extended to beliefs about other agents’
forts. beliefs and mutual beliefs which are modeled by

so-called belief state variables Secondly, wh-

guestionscan be modeled as queries about MVSVs

Planning in dynamic multiagent environmentdn our model (see below). Thirdly, algorithms for
means reasoning about the environment, about (m@ienerating referring expressions, such as the full
tual) beliefs, perceptual capabilities and the possiblrevity algorithm of (Dale, 1992), can be directly
physical and communicative actions of oneself antiplemented using a MVSV representation.
of others. All of these elements can be modeled in MAPL actionsare similar to those of PDDL. In
the multiagent planning language MAPL (BrennerMAPL, every action has &ontrolling agent who
2008). In this section we introduce MAPL infor- €xecutes the action and controls when it is done.
mally and discuss its suitability for dialogue plan-Agents are fully autonomous when executing ac-
ning; formal definitions can be found in (Brenner'tions, i.e. there is no external synchronization or
2008). scheduling component. As a consequence an action
MAPL is a multiagent variant of PDDL (Plan- Will only be executed if, in addition to its precon-
ning Domain Definition Language), the de factdditions being satisfied, the controlling agémtows
standard language for classical planning (Fox ani@at they hold. Implicitly, all MAPL actions are
Long, 2003). One important extension in MAPLextended with suclkknowledge preconditions(cf.
is the use of multi-valued state variables (MVSVsglso (Lochbaum, 1998)). Similarly, there are im-
instead of propositions. For example, a state varRlicit commitment preconditions, intuitively de-
ablecolor(ball) would have exactly one of its possi- Scribing the fact that an agent will only execute ac-
ble domainvaluesred, yellow,or blue compared to tions if he has agreed to do so.
the three semantically unrelated propositi¢osior A MAPL domain can define three different ways
ball red), (color ball yellow), (color ball blug)all to affect the beliefs of agents (necessary, e.g., in
or none of which could be true in a given STRIPSrder to satisfy knowledge preconditions): sensing,
state. MVSVs have successfully been used in clasopresence (joint sensing), and communication. All
sical planning in recent years (Helmert, 2006), buthree are MAPL actions that have knowledge ef-
they also provide distinctive benefits when used fdiects. Sensor modelsdescribe the circumstances
dialogue planning. in which the current value of a state variable can
Firstly, we can use MVSVs to mod&howledge be perceived.Copresence modelsaire multiagent
andignoranceof agents: if no value is known for sensor models that induce mutual belief about the
a state variable it isinknown(contrast this with perceived state variable (Clark and Marshall, 1981).
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2 Multiagent Planning Formalism



Informally, agents are copresent when they are in It is often impossible for a group of situated
a common situation where they can not only peragents to jointly commit to a self-synchronizing plan
ceive the same things but also each other. Indivigsrior to beginning its execution. As an example, line
ual and joint sensing are important for dialogue bet of Fig. 2 shows how an agent must start executing
cause they helpvoidingit: an agent does not needits individual multiagent plan (i. e. a plan for a group
to ask for what he senses himself, and he does not agents but to which no other agent has commit-
need to verbalize what he assumes to be perceiveztl yet) in order to even get the chance to negotiate
by the other agents as well. Communicative actihe plan with the others: In this scenario, Bill must
currently come in two forms: (iPeclarative state- physically move first because he can only communi-
mentsare actions that, similarly to sensory actionsgate with his household appliances “at home”. This
can change the belief state of another agent in sps-modeled explicitly in the MAPL domain by means
cific circumstances. Line 5 of Fig. 2 shows an examef a so-calleommunication preconditionthat the

ple of an agent explicitly providing another one withplanner has to satisfy if agents should engage in di-
factual information. (ii)Questions commandsand alogue. In future work, we will also use communi-
acknowledgments are not explicitly modeled in a cation preconditions to model dialogue-specific re-
MAPL domain, but generated during CCP (as disquirements likeattention(Grosz and Sidner, 1986)
cussed in Sect. 3). These communicative acts pandengagemen(Sidner et al., 2005).

tentially cover a broad range of speech acts, whose _ _ )

differentiation requires further refinement of the cor3 ~ Continual Collaborative Planning

responding preconditions and effects. Continual Collaborative Planning (CCP) agents
MAPL goalscorrespond to PDDL goal formulae. gyitch between planning, partial plan execution,
However, MAPL has two additional goal-like con-monjtoring, plan adaptation and communication.
structs: Temporary subgoals(TSGs) are manda- a|q. 1 gives a high-level description of the CCP al-
tory, but not necessarily permanent goals, i. €. theyorithm. Since the current state of the algorithm not
must be satisfied by the plan at some point, binly depends on what the agent has been doing, but
may be violated in the final stateAssertions on 150 on the messages received from others, CCP is

the other hand, descritmptional “landmarks”, i.e. specified as a Distributed Algorithm (Lynch, 1996).
TSGs that may helpful in achieving specific ef-
fects in later phases of the continual planning proAlgorithm 1 CCP AGENT(S, G)
cesses, which cannot be fully planned for yet be- p =
cause of missing information (Brenner and Nebel, Receivedno message:
2006; Brenner, 2008). For example, the MAPL do-  if 5 satisfiesi do
. . L . return “goal reached”
main used to create the simulation in Fig. 1 contains  gge
an assertion stating that, informally speaking, to get P = MONITORINGANDREPLANNING(S, G, P)

something one must first know where it is. if P =0 then _ )
return “cannot achieve goak

MAPL plans differ from PDDL plans in being else
only partially ordered This is inevitable since we (S, P) = EXECUTIONANDSTATEESTIMATION(S, P)
assume that there is no central executive which couldReceived(tell-val vz) from agenta:
. addv=xt0o S
guarantee a totally ordered execution. We use the _
. Receivedrequestf) from agenta:
term asynchronous planssince MAPL plans also sg = TRANSLATEREQUESTTOGOAL (e)
allow for concurrentoccurrence of actions. Fig. 3 P = MONITORINGANDREPLANNING(S, G U sg, ))
shows an example. An asynchronous plan that guar- ' £ =¥ then
) . . . send“cannot execute request to a
antees that the implied knowledge preconditions will  gjse
be satisfied during execution (e. g. by explicitly nam- addsg to G as temporary subgoal
ing the perceptions to be made and speech acts to be
used) is callecself-synchronizing planbecause it  We will first discuss the base case when no com-
“explains” how the agents can coordinate their bemunication has taken place yet, i.e. the CCP agent

havior during execution. has neither sent nor received any messages yet.




Roughly speaking, the agent alternates between (re-
)planning and acting in this case. The two phases
are detailed in Algs. 2 and 3. Alg. 2 shows how a
new planning phase is triggered: the agaanitors
whether his current plan has become invalid due to
unexpected (external) events or changes in his goals.
If this is the case, the agent adapts its plan by replan-
ning those parts that are no longer executable. In or-
der to exploit the power of state-of-the-art planning
systems, Alg. 2 uses an unspecified classical planner
PLANNER to (re-)plan for the obsolete or missing
parts of the old plan. The details of this process are
irrelevant for the purpose of this paper; it results in
an asynchronous plan that specifies actions for (pos- ~ Figure 3: Bill's plan for getting pizza.
sibly) several agents and the causal and temporal re-

lation between them that is necessary to achieve ﬂﬂﬁg agent. In both cases, the CCP agent will try to
planning agent's goal. update its knowledge about the world state based on
the expected effects and the actual perceptions made
(FusEefunction).

bill: go home
position(bill)=home

position(bill)=home

negotiate_plan bill oven

pommitted(oven)=true position(bill)=home negotiate_plan bill robot

oven: bake pizza committed(robot)=true

N
~ @snon(pl zza)=oven

~

temperature(pizza)=hot robot: bring bill pizza

position(pizza)=hill

bill: eat pizza

Algorithm 2 MoNITORINGANDREPLANNING(S, G, P)
if res(S,P) 2 G

REMOVEOBSOLETESUFFIXGRAPH(P) -

P’ = PLANNER(A, res(S, P), G) Algorithm 3 EXECUTIONANDSTATEESTIMATION(S, P)

P = concaT(P, P') e = choosea first-level event fronP
return P if e ='negotiateplan with agent’
r = SELECTBESTREQUEST(P, a)
sendrequest() to a
Fig. 3 shows such an asynchronous plan for theelse if agt(e) = selfthen

pizzascenario of Fig. 2, created with Alg. 2. Note S,Efi‘;;gg(zg
that this plan contains speciakgotiationactions; ., — EXP,;CTEDPERCEPT,OWS/,AS)
they will be the triggers for task-orientated subdi- perc = GETSENSORDATA ()
alogues in a later phase of CCP. The planning al-fPere 2 exp or exp = f then
: T . . removee from P

gorithm enforces such negotiation actions to be in- s = Fusg(s’, perc)
cluded in a plan whenever this plan includes actionsreturn (S,P)
or subplans to be executed not by the planning agent,
but by another agent who is not yet committed to The most interesting case for this paper is the one
this plan. Thus CCP ensures that a (sub-)dialogughere the action chosen to be executedegoti-
will take place that either secures the other agentste plan. This means that a CCP agent (A) is now in
commitment or triggers replanning. Note how, ina situation where he is able communicate with an-
turn, the need for negotiation has forced the plann@ther agent (B) that he intends to collaborate with,
to include a physical action (Bil's moving home)i.e. As plan includes at least one action controlled
into the plan in order to satisfy the abovementionedy B, that B has not yet committed to. In this case, A
communication precondition. will send arequesto B. However, if a plan contains

As soon as a CCP agent has found (or repairedgveral actions by another agent, i.e. a whole sub-
a valid plan it enters the execution phase, describgafan, it is often best not to request execution of the
in Alg. 3. First, an actione, on the first level of the actions individually, but to ask for the end result or,
plan, i.e. one whose preconditions are satisfied irespectively, the final action in the subplan. In other
the current state, is chosen non-deterministically. Hituations it may even be reasonable to request the
the action is controlled by the CCP agent himself, iachievement of subplans that include more than one
is executed. If not, the planning agent tries to detergent. CCP does not stipulate a specific implemen-
mine whether the action was executed by its controtation of SELECTBESTREQUEST, we will describe




one version in Sect. 5. (1) Anne: request R2D2 'give R2D2 coffee Anne’.

When an agent receives a request, Alg. 1 enters(2) R2D2: acceptequest’give R2D2 coffee Anne’. |
into a new phase. First the request is translatedgii iﬁr?é: é)e(ggjétfeqc; Ler{”rﬁlgg%eziiz(zc gf‘?:g?ﬁee '
into a goal formula (Brenner, 2007) and tested far (s) R2D2: ackachieved 'tellval Anne R2D2 pos(coffee)'.
achievability. This is a simplification for the sake off (6)
processing efficiency, based on the assumption that

what matters to the other agent is not the exact alc:-_ 4: The MAPSIM ¢ Fig. 1 without NL
tion, but itsresult, i.e. the achievement of a goal 'gure 4. € run of Fig. 1 without

or precondition for a subsequent action by the re\{erballzatlon.

guesting agent. Additionally, constraints on the ar-
guments of requests (e. g. intended referents of natlation, MAPSIM maintains and updates the global
ural language expressions) are easier to model a®rld state and it uses the sensor models to com-
goal constraints than as actions (Brenner, 2007). Apute individual and joint perceptions of agents. The
cepted requests are adopted@siporary subgoals agents interact with the simulation by sendoan-
(TSGs). This means that they must only be achievadandsin the form of plain MAPL actions. The
temporarily and do not have to hold any more whesgimulator then executes the action, i. e. it checks the
the agent’s main goal is achieved. preconditions and applies effects as specified in the
The adoption of requests as TSGs is a crucial el®@APL domain. If the controlling agent of a com-
ment of CCP that, to the best of our knowledge, hasand is not identical to the agent who sent it to the
not been described in other Continual Planning agimulator this is interpreted ageguestwhich is not
proaches: in addition to repeatedly revising their bedirectly executed but passed on to the corresponding
liefs about the world, CCP agents also perform coragent. MAPSIM also accepts specific commands
tinual goal revision In the simplest case, this leadsfor acknowledging subgoal acceptance and subgoal
to information-seekingubdialoguesas in lines 3-5 achievement.
of Fig. 1. But newly adopted TSGs also explain why Agents do not need to know anything about how
agents engage in subdialogues that mix communiceheir actions are executed. Thus, they can implement
tive and physical actions (as in lines 6-9 of the samgrbitrary deliberative or reactive methods to deter-
example). mine their behaviour and their reactions to requests.
We believe that this can make MAPSIM a valuable
4 MAPSIM evaluation tool even when the DCP and dialogue
Continual Planning approaches can only be testesfrategies investigated differ significantly from CCP.
in environments where agents can actually executepr example, the simulated dialogues produced by
monitor and revise their plans. This is all theMAPSIM using different strategies could be evalu-
more true for our DCP approach to situated dialoguated using objective measures such as task success
where agents need to interact collaboratively. To thigr dialogue costs from the PARADISE framework
end we have developed MAPSIM, a software enfWalker et al., 1997).
vironment that automatically generates multiagent MAPSIM and the CCP agents described in this
simulations from MAPL domains. In other words,paper have been implemented in Python, using state-
MAPSIM interprets the planning domain asaxe- of-the-art planning technology as subsolvers.The
cutable modebf the environment. Thus, MAPSIM generic planner currently used for CCP is a slightly
allows designers of DCP algorithms to evaluate themodified version of Axioms-FF (Thiebaux et al.,
approaches on various domains with minimal effor2003). This enables MAPSIM to generate dialogues
In this section, we give an overview of MAPSIM between artificial agents very fast.
and describe how it is used for generating situated The main goal of this work is to show how a
dialogues. generic multiagent planning algorithm can be used
The MAPL domain description is parsed, ana———— _ _ _
For example, during the dialogue of Fig. 1 CCP called the

Iyze(_j ar?d turned into perception, aCt'Or_]’ and CQ%LANNERfunction 13 times with a total planning time less than
munication models for CCP agents. During the simhalf a second on a 1.6 GHz AMD Athlon.




for situated dialogue in natural language, e.g. ito the kitchen to get coffee, but only Anne can open
human-robot interaction (HRI). It is therefore im-the kitchen door. In th@izzascenario (Fig. 2) Bill
portant to investigate the efforts needed for mappingeeds the collaboration of his intelligent household
between the MAPL-based representation used tappliances to be able to eat pizza.
CCP agents and natural language. To that end MAP- As we have already seen, Bill's initial individ-
SIM includes a verbalization module, called tlee  ual planning process resulted in the multiagent plan
porter agent. The reporter observes all physical anshown in Fig. 3. In this situation, Alg. 3 can only
communicative events in the simulation and verbakhoose ghysicalaction for Bill to execute, namely
izes them in English. All dialogues shown throughgo home Note that only theexecutionof this ac-
out the paper are unaltered outputs of the reportaion enables Bill to subsequently communicate with
Fig. 4 shows the beginning of the MAPSIM run ofOven and R2D2 at all. Thus, Bill's problem can
Fig. 1 with reporting turned off. only be solved by a DCP approach that is able to in-
The reporter is a simple template engine that firgerleave planning, physical execution and dialogue
determines an appropriate pattern depending on tiMhenever necessary.
command type currently executed, then recursively When at home, Bill can (and must) negoti-
replaces templates with concrete arguments untilate his plan with the two other agents he wants
template-free sentence is generated. Base values forinvolve. Alg. 3 uses the black-box function
arguments are generated directly from analyzing th@eL ECTBESTREQUEST to determine an appropri-
MAPL domain. For example, operator names arate temporary subgoaWwhose achievement will be
assumed to directly correspond to verbs. Standardquested from another agent.
templates can be overridden by domain-specific pat- The currently usetREQUESTSUBPLAN strategy
terns. However, the only general need for this wevorks as follows: the agent first determines the
have experienced is the definition of verb complelongest possible subplan involving only one agent,
ments. For example, thelouseholddomain de- then chooses an action on thieal level of this plan
fines the complement dfove” as“to the $arg0” as the best request. In other words, a CCP agent
where$argOis instantiated with the first argument of posing a request does not specify details about how
the respective command. Apart from verb complere wants a temporary subgoal to be achieved. In
ments, theonly domain-specific template that wasthe householdexample, Anne thus does not request
necessary to generate Fig. 1 states thatitber- R2D2 to go to the kitchen and get the coffee there,
rogative (wh-word) for state variableposition(x) but just requests the last action in her multiagent
is “where”. While, compared to “real” natural- plan, namely the robot giving her the coffee.
language processing systems, this is a simplistic Admittedly, the straightforward verbalization of
approach with obvious limits, the minimal effortthis action by the reporting agent using the verb
needed to achieve fairly realistic surface generatiogjive” results in an unnatural dialogue contribution.
is noteworthy and will be exploited in future work. Anne’s request would be more appropriately formu-
. . lated using “bring”, “fetch” or “get”, which unlike
5 Detailed Analysis of MAPSIM runs “give” do not presuppose that R2D2 already has the
This section provides a detailed analysis of severabffee. This reveals the need to take more of the
CCP runs in MAPSIM. It is important to realize thatsubplan into account when verbalizing the request, a
none of the sample runs in this paper is based dnapic we are taking up in further work.

just one multiagent plan, but onseriesof plans, Anne thus leaves it to R2D2 to find its own so-
devised, partly executed and revised several timdstion to achieve the TSG. This “lazy” strategy mir-
according to Alg. 1. rors on the dialogue level the idea of the Continual

All dialogue in CCP is driven by individual de- Planning approach, where an individual CCP agent
sires, i.e. agents engage in dialogue only if thepostpones the solution of some subproblems to later
need help in satisfying their individual goals. In thephases in the planning-execution-monitoring cycle.
householdscenario (Fig. 1) the necessity for collab- R2D2’s previous plan was to do nothing (which
oration stems from the fact that only R2D2 can movsatisfied his “empty” goal). After adopting the new



TSG, this plan is no longer valid and Alg. 2 triggersand CCP, mainly because CCP agents rely on them
a new planning phase. Since R2D2 does not knoanly implicitly — until a violation of their assump-
where the coffee is this plan includes an appropriions prompts plan adaptation or new dialogue. In
ate information-gathering action and postpones déhis respect, the commitments made by CCP agents
tailed planning for getting the coffee until this infor- more resemble thpint persistent goalef (Cohen
mation is known (by means of assertionBrenner and Levesque, 1991). Nevertheless, SharedPlans
and Nebel, 2006)). In our example, the informationean be regarded as a “specification” of the kind of
gathering action is a request for information tacollaboration CCP intends to modebmputation-
Anne (cf. line 3 of Fig. 1). This request is generatedlly.

follows: R2D2’s pl ins th iciall-val
as Toflows S plan contains the actigall-va (Blaylock et al., 2003) note that SharedPlans do
Anne R2D2 pos coffee) e. a speech act to be exe- . .
not model the cooperation that occurs duréxgcu-

cuted by Anne. According to Alg. 3, this action to&ion. They propose a high-level model of dialogue as

be performed by another agent (from R2D2’s poin . . ]
of view) must be requested first. Line 3 of Fig. 4coIIaborat|ve problem solvingCPS); our approach

shows this request when executed without the can be regarded as an instantiation of that model.

porter agent. Its verbalization results in R2D2 ask_However, our work complements both SharedPlans

ing the question “Where is the coffee, Anne?”. and CPS by describingow knowledge precondi-

MAPSIM provides several options or generating{o"’ POMPt 80 sensing and information gather

acknowledgmentsin the dialogues presented here,
agents provide acknowledgments when they acceptDistributed Continual Planning has been advo-
arequest (e.g. lines 2 and 7 of Fig. 1) and also whetated as a new paradigm for planning in dynamic
they realize that a request of theirs has been satisfigtliltiagent environment (DesJardins et al., 1999).
(e.g.lines 5, 9 and 14 of Fig. 1). Note that answero the best of our knowledge, ours is the first princi-
to questions are acknowledged only briefly, but sapled attempt to apply DCP to dialogue planning and
isfaction of physical subgoals is acknowledged moralso the first DCP approach describing deliberative
explicitly. While this is not necessarily the best acgoal revisionas part of a DCP algorithm.
knowledgment strategy, it shows how the multiagent ) i )
plan and the CCP history provid®ntextas well as Collagen (Rich et al., 2001) is a system for build-

focus(Grosz and Sidner, 1986)) that can easily bj:pg coIIaborat.ive interface agents that _is based on
exploited for surface generation and, in the future(,Gr_osz_ and S|Qn§r, 1986; Grosz and Sidner, 1990),
also for interpretation (cf. Sect. 7). which is domain-independent and has been used for

For lack of space, we cannot discuss the reé’f"riou_s applica.tions. Collagen’s mthOdS for rep-
of the dialogues in detail. Note, however, hov\;§z§ent|ng the discourse stat'e _and doing plan recog-
the agents switch seamlessly between communic'&'—t'oln are much mor”e sophdlstlcated than ,CCIP dcur—
tive and physical actions whenever necessary. N{)_(fnt Y. _H(_)wever, Collagen 0€s not (yet) Inciude a
shown by the reports are thgerceptionsmade by flrst-prlnC|pIes plgnner, but rellgs on_plan I|br§1r|es
the agents during the runs. Nevertheless, they a?@d domaln—speuf!c code_plug—lrjs (R'_Ch and Sidner,
important for the dialogue, too, since agents als8007). Itwou_ld be mteres_tlng to investigate whether
reason about their mutual perceptions and thus C&”ICP can be integrated with Collagen.

avoid unnecessary verbalizations. Similarly, the most prominent representative of

the information-state-update approach to dialogue
6 Related Work modeling, GoDiS (Traum and Larsson, 2003),
This work shares many characteristics with previhas complementary rather than competing main
ous approaches modeling dialoguecafiaborative strengths: GoDiS has a more elaborate repertoire of
planning most notably those based on the Sharedlialogue moves and can produce more sophisticated
Plans formalism (Grosz and Sidner, 1990; Grosz ardialogue behavior than CCP and MAPSIM, but it
Kraus, 1996; Lochbaum, 1998). SharedPlans useses static plans, and it is not clear how it would
much more elaborate mental attitudes than MAPtombine communication with physical action.



7 Conclusion and Outlook (Thiebaux et al., 2003), we expect our dialogue ap-

We h ted lqorithmic Eroach to also scale up well to a larger repertoire of

YVe have presented a new algorithmic rameW(_)rspeech acts, more complex interactions and higher

in which situated dialogue is modeled as Contin- . : :
| Collaborative Planni CCP). We h h numbers of interacting parties.

ual Collaborative Planning ( ). We have shown We are also investigating how to better expose the

.r:;;\?/;l't).(::_'n'tfg'vﬁ dliﬁgufotr:?r: 'rr:t.igsgxegemf;burpose that an individual dialogue move serves in
! 1ons, Sensing, uhicatl chieving an agent’s overall goals, e.g. by deriving

agents occurs naturally during CCP. As a practlc%n explicitdialogue plarduring CCP. Such a plan, in

contrlkt)utllo?r,] v;/e hfve (:.GVT:OPEd MAtPS|M' ﬁ_ SOﬂ't;[ombination with the current state of the CCP pro-
ware tool that automatically generates mu Iagencess,will provide rich context information to the lin-

simulations from formal planning domains, thus per; uistic components of our robot, e. g. for the task of

rrzlttltng.the evalu%tlon of CC]EP ar|1_d ?t her dialogu tterance interpretation and contextually appropriate
strategies on a wide range of applications. surface generation.
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