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Abstract

Situated dialogue is usually tightly integrated with be-
havior planning, physical action and perception. This
paper presents an algorithmic framework, Continual
Collaborative Planning (CCP), for modeling this kind
of integrated behavior and shows how CCP agents nat-
urally blend physical and communicative actions. For
experiments with conversational CCP agents we have
developed MAPSIM, a software environment that can
generate multiagent simulations from formal multia-
gent planning problems automatically. MAPSIM
permits comparison of CCP-based dialogue strategies
on a wide range of domains and problems without
domain-specific programming. Despite their linguis-
tic capabilities being limited MAPSIM agents can al-
ready engage in fairly realistic situated dialogues. Our
ongoing work is taking this approach from simulation
to real human-robot interaction.

1 Introduction

When several agents are situated in a common envi-
ronment they usually interact physically as well as
verbally. Verbal interactions in such environments,
i. e. situated dialogues, bothreflectthe past andinflu-
encethe future physical behavior of the agents. As
a result, situated dialogue is continuallyinterleaved
with behavior planning, physical action and sensing.
But when and why do agents switch between these
rather distinct activities? In particular, how is dia-
logue triggered by physical events and how, in turn,
does it constrain them?

In this paper, we approach these questions from
the perspective ofmultiagent planning. Specifically,
we describe situated dialogue as Distributed Contin-
ual Planning (DCP) (DesJardins et al., 1999), i. e. as
a process that integrates planning, acting and per-
ception with communication. We present a novel
DCP algorithm called Continual Collaborative Plan-

(1) Anne: ”Please give me the coffee, R2D2.”
(2) R2D2: ”Okay.”
(3) R2D2: ”Where is the coffee, Anne?”
(4) Anne: ”The coffee is in the kitchen.”
(5) R2D2: ”Thanks, Anne.”
(6) R2D2: ”Please open the kitchen door, Anne.”
(7) Anne: ”Okay.”
(8) Anne opens the kitchen door.
(9) R2D2: ”Thanks for opening the kitchen door, Anne.”

(10) R2D2 moves to the kitchen.
(11) R2D2 takes the coffee.
(12) R2D2 moves to the living room.
(13) R2D2 brings Anne the coffee.
(14) Anne: ”Thanks for bringing me the coffee, R2D2.”

Figure 1: Mixed-initiative dialogue between two ar-
tificial agents in MAPSIM (Householddomain).

ning (CCP) and show how it can be used for situated
dialogue modeling. Interestingly, the role of com-
munication in CCP is twofold: A dialogue move
can be part of the collaborativeplanning process;
however, it is also theexecutionof a communica-
tive action and, just like the execution of a physical
action, it changes the “world” in ways that may lead
to previously unforeseen changes in plans and, con-
sequently, additional interactions. Since goals and
plans of agents are continually revised, CCP mod-
els very dynamic interactions that naturally include
mixed-initiative subdialogues and interleaved phys-
ical and communicative actions.

Approaches to situated dialogue can only be eval-
uated in environments where agents are actually
situated, i. e. where they can not only communi-
cate, but also perceive and act. Because we want
to evaluate CCP (and related approaches) over a



wide range of application domains we have devel-
oped MAPSIM, a simulation environment that turns
formal multiagent planning problems into multia-
gent simulations. Crucially, MAPSIM creates the
simulation as well as a domain-specific lexicon for
natural-language dialogueautomaticallywhen an-
alyzing the planning domain. Since no domain-
specific programmingis needed MAPSIM can be
used to quickly evaluate dialogue strategies on a
wide range of domains and problems.

The paper is structured as follows: We first in-
troduce our multiagent planning formalism and dis-
cuss its suitability for dialogue planning. Then we
present the CCP algorithm. In the subsequent sec-
tions we describe MAPSIM and analyze CCP dia-
logues in several domains. In the final sections we
discuss related work and indicate our ongoing ef-
forts.

2 Multiagent Planning Formalism

Planning in dynamic multiagent environments
means reasoning about the environment, about (mu-
tual) beliefs, perceptual capabilities and the possible
physical and communicative actions of oneself and
of others. All of these elements can be modeled in
the multiagent planning language MAPL (Brenner,
2008). In this section we introduce MAPL infor-
mally and discuss its suitability for dialogue plan-
ning; formal definitions can be found in (Brenner,
2008).

MAPL is a multiagent variant of PDDL (Plan-
ning Domain Definition Language), the de facto
standard language for classical planning (Fox and
Long, 2003). One important extension in MAPL
is the use of multi-valued state variables (MVSVs)
instead of propositions. For example, a state vari-
ablecolor(ball) would have exactly one of its possi-
ble domainvaluesred, yellow,or bluecompared to
the three semantically unrelated propositions(color
ball red), (color ball yellow), (color ball blue), all
or none of which could be true in a given STRIPS
state. MVSVs have successfully been used in clas-
sical planning in recent years (Helmert, 2006), but
they also provide distinctive benefits when used for
dialogue planning.

Firstly, we can use MVSVs to modelknowledge
and ignoranceof agents: if no value is known for
a state variable it isunknown(contrast this with

(1) Bill goes home.
(2) Bill: ”Please bake the pizza, Oven.”
(3) Oven: ”Okay.”
(4) Oven bakes the pizza.
(5) Oven: ”I have finished baking the pizza, Bill.”
(6) Bill: ”Thanks for baking the pizza, Oven.”
(7) Bill: ”Please bring me the pizza, R2D2.”
(8) R2D2: ”Okay.”
(9) R2D2 brings Bill the pizza.

(10) Bill: ”Thanks for bringing me the pizza, R2D2.”
(11) Bill eats the pizza.

Figure 2: Dialogue between three artificial agents in
MAPSIM (Pizzadomain).

the closed world assumption of classical planning:
what is not known to be true isfalse). This concept
can also be extended to beliefs about other agents’
beliefs and mutual beliefs which are modeled by
so-calledbelief state variables. Secondly, wh-
questionscan be modeled as queries about MVSVs
in our model (see below). Thirdly, algorithms for
generating referring expressions, such as the full
brevity algorithm of (Dale, 1992), can be directly
implemented using a MVSV representation.

MAPL actions are similar to those of PDDL. In
MAPL, every action has acontrolling agent who
executes the action and controls when it is done.
Agents are fully autonomous when executing ac-
tions, i. e. there is no external synchronization or
scheduling component. As a consequence an action
will only be executed if, in addition to its precon-
ditions being satisfied, the controlling agentknows
that they hold. Implicitly, all MAPL actions are
extended with suchknowledge preconditions(cf.
also (Lochbaum, 1998)). Similarly, there are im-
plicit commitment preconditions, intuitively de-
scribing the fact that an agent will only execute ac-
tions if he has agreed to do so.

A MAPL domain can define three different ways
to affect the beliefs of agents (necessary, e. g., in
order to satisfy knowledge preconditions): sensing,
copresence (joint sensing), and communication. All
three are MAPL actions that have knowledge ef-
fects. Sensor modelsdescribe the circumstances
in which the current value of a state variable can
be perceived.Copresence modelsare multiagent
sensor models that induce mutual belief about the
perceived state variable (Clark and Marshall, 1981).



Informally, agents are copresent when they are in
a common situation where they can not only per-
ceive the same things but also each other. Individ-
ual and joint sensing are important for dialogue be-
cause they helpavoidingit: an agent does not need
to ask for what he senses himself, and he does not
need to verbalize what he assumes to be perceived
by the other agents as well. Communicative acts
currently come in two forms: (i)Declarative state-
mentsare actions that, similarly to sensory actions,
can change the belief state of another agent in spe-
cific circumstances. Line 5 of Fig. 2 shows an exam-
ple of an agent explicitly providing another one with
factual information. (ii)Questions, commandsand
acknowledgments are not explicitly modeled in a
MAPL domain, but generated during CCP (as dis-
cussed in Sect. 3). These communicative acts po-
tentially cover a broad range of speech acts, whose
differentiation requires further refinement of the cor-
responding preconditions and effects.

MAPL goalscorrespond to PDDL goal formulae.
However, MAPL has two additional goal-like con-
structs: Temporary subgoals (TSGs) are manda-
tory, but not necessarily permanent goals, i. e. they
must be satisfied by the plan at some point, but
may be violated in the final state.Assertions, on
the other hand, describeoptional “landmarks”, i. e.
TSGs that may helpful in achieving specific ef-
fects in later phases of the continual planning pro-
cesses, which cannot be fully planned for yet be-
cause of missing information (Brenner and Nebel,
2006; Brenner, 2008). For example, the MAPL do-
main used to create the simulation in Fig. 1 contains
an assertion stating that, informally speaking, to get
something one must first know where it is.

MAPL plans differ from PDDL plans in being
only partially ordered. This is inevitable since we
assume that there is no central executive which could
guarantee a totally ordered execution. We use the
term asynchronous planssince MAPL plans also
allow for concurrentoccurrence of actions. Fig. 3
shows an example. An asynchronous plan that guar-
antees that the implied knowledge preconditions will
be satisfied during execution (e. g. by explicitly nam-
ing the perceptions to be made and speech acts to be
used) is calledself-synchronizing plan because it
“explains” how the agents can coordinate their be-
havior during execution.

It is often impossible for a group of situated
agents to jointly commit to a self-synchronizing plan
prior to beginning its execution. As an example, line
1 of Fig. 2 shows how an agent must start executing
its individual multiagent plan (i. e. a plan for a group
of agents but to which no other agent has commit-
ted yet) in order to even get the chance to negotiate
the plan with the others: In this scenario, Bill must
physically move first because he can only communi-
cate with his household appliances “at home”. This
is modeled explicitly in the MAPL domain by means
of a so-calledcommunication preconditionthat the
planner has to satisfy if agents should engage in di-
alogue. In future work, we will also use communi-
cation preconditions to model dialogue-specific re-
quirements likeattention(Grosz and Sidner, 1986)
andengagement(Sidner et al., 2005).

3 Continual Collaborative Planning

Continual Collaborative Planning (CCP) agents
switch between planning, partial plan execution,
monitoring, plan adaptation and communication.
Alg. 1 gives a high-level description of the CCP al-
gorithm. Since the current state of the algorithm not
only depends on what the agent has been doing, but
also on the messages received from others, CCP is
specified as a Distributed Algorithm (Lynch, 1996).

Algorithm 1 CCP AGENT(S, G)

P = ∅
Receivedno message:

if S satisfiesG do
return “goal reached”

else
P = MONITORINGANDREPLANNING(S, G, P )

if P = ∅ then
return “cannot achieve goalG”

else
(S, P ) = EXECUTIONANDSTATEESTIMATION(S, P )

Received(tell-val vx) from agenta:
addv

.
=x to S

Receivedrequest(e) from agenta:
sg = TRANSLATEREQUESTTOGOAL(e)
P = MONITORINGANDREPLANNING(S, G ∪ sg, ∅)
if P = ∅ then

send“cannot execute requeste” to a
else

addsg to G as temporary subgoal

We will first discuss the base case when no com-
munication has taken place yet, i. e. the CCP agent
has neither sent nor received any messages yet.



Roughly speaking, the agent alternates between (re-
)planning and acting in this case. The two phases
are detailed in Algs. 2 and 3. Alg. 2 shows how a
new planning phase is triggered: the agentmonitors
whether his current plan has become invalid due to
unexpected (external) events or changes in his goals.
If this is the case, the agent adapts its plan by replan-
ning those parts that are no longer executable. In or-
der to exploit the power of state-of-the-art planning
systems, Alg. 2 uses an unspecified classical planner
PLANNER to (re-)plan for the obsolete or missing
parts of the old plan. The details of this process are
irrelevant for the purpose of this paper; it results in
an asynchronous plan that specifies actions for (pos-
sibly) several agents and the causal and temporal re-
lation between them that is necessary to achieve the
planning agent’s goal.

Algorithm 2 MONITORINGANDREPLANNING(S, G, P )

if res(S, P ) 6⊇ G
REMOVEOBSOLETESUFFIXGRAPH(P)
P ′ = PLANNER(A, res(S, P ), G)
P = CONCAT(P, P ′)

return P

Fig. 3 shows such an asynchronous plan for the
pizzascenario of Fig. 2, created with Alg. 2. Note
that this plan contains specialnegotiationactions;
they will be the triggers for task-orientated subdi-
alogues in a later phase of CCP. The planning al-
gorithm enforces such negotiation actions to be in-
cluded in a plan whenever this plan includes actions
or subplans to be executed not by the planning agent,
but by another agent who is not yet committed to
this plan. Thus CCP ensures that a (sub-)dialogue
will take place that either secures the other agent’s
commitment or triggers replanning. Note how, in
turn, the need for negotiation has forced the planner
to include a physical action (Bill’s moving home)
into the plan in order to satisfy the abovementioned
communication precondition.

As soon as a CCP agent has found (or repaired)
a valid plan it enters the execution phase, described
in Alg. 3. First, an action,e, on the first level of the
plan, i. e. one whose preconditions are satisfied in
the current state, is chosen non-deterministically. If
the action is controlled by the CCP agent himself, it
is executed. If not, the planning agent tries to deter-
mine whether the action was executed by its control-

oven: bake pizza

robot: bring bill pizza

position(pizza)=oven

bill: eat pizza

temperature(pizza)=hot

position(pizza)=bill

bill: go home

position(bill)=home

negotiate_plan bill oven

position(bill)=home

negotiate_plan bill robot

position(bill)=home

committed(oven)=true

committed(robot)=true

Figure 3: Bill’s plan for getting pizza.

ling agent. In both cases, the CCP agent will try to
update its knowledge about the world state based on
the expected effects and the actual perceptions made
(FUSE function).

Algorithm 3 EXECUTIONANDSTATEESTIMATION(S, P )

e = choosea first-level event fromP
if e =’negotiateplan with agenta’

r = SELECTBESTREQUEST(P, a)
sendrequest(r) to a

else if agt(e) = self then
EXECUTE(e)

S′ = app(S, e)
exp = EXPECTEDPERCEPTIONS(S′, As)
perc = GETSENSORDATA()
if perc ⊇ exp or exp = ∅ then

removee from P
S = FUSE(S′, perc)
return (S,P)

The most interesting case for this paper is the one
where the action chosen to be executed isnegoti-
ate plan. This means that a CCP agent (A) is now in
a situation where he is able communicate with an-
other agent (B) that he intends to collaborate with,
i. e. A’s plan includes at least one action controlled
by B, that B has not yet committed to. In this case, A
will send arequestto B. However, if a plan contains
several actions by another agent, i. e. a whole sub-
plan, it is often best not to request execution of the
actions individually, but to ask for the end result or,
respectively, the final action in the subplan. In other
situations it may even be reasonable to request the
achievement of subplans that include more than one
agent. CCP does not stipulate a specific implemen-
tation of SELECTBESTREQUEST; we will describe



one version in Sect. 5.
When an agent receives a request, Alg. 1 enters

into a new phase. First the request is translated
into a goal formula (Brenner, 2007) and tested for
achievability. This is a simplification for the sake of
processing efficiency, based on the assumption that
what matters to the other agent is not the exact ac-
tion, but its result, i. e. the achievement of a goal
or precondition for a subsequent action by the re-
questing agent. Additionally, constraints on the ar-
guments of requests (e. g. intended referents of nat-
ural language expressions) are easier to model as
goal constraints than as actions (Brenner, 2007). Ac-
cepted requests are adopted astemporary subgoals
(TSGs). This means that they must only be achieved
temporarily and do not have to hold any more when
the agent’s main goal is achieved.

The adoption of requests as TSGs is a crucial ele-
ment of CCP that, to the best of our knowledge, has
not been described in other Continual Planning ap-
proaches: in addition to repeatedly revising their be-
liefs about the world, CCP agents also perform con-
tinual goal revision. In the simplest case, this leads
to information-seekingsubdialogues, as in lines 3–5
of Fig. 1. But newly adopted TSGs also explain why
agents engage in subdialogues that mix communica-
tive and physical actions (as in lines 6–9 of the same
example).

4 MAPSIM

Continual Planning approaches can only be tested
in environments where agents can actually execute,
monitor and revise their plans. This is all the
more true for our DCP approach to situated dialogue
where agents need to interact collaboratively. To this
end we have developed MAPSIM, a software en-
vironment that automatically generates multiagent
simulations from MAPL domains. In other words,
MAPSIM interprets the planning domain as anexe-
cutable modelof the environment. Thus, MAPSIM
allows designers of DCP algorithms to evaluate their
approaches on various domains with minimal effort.
In this section, we give an overview of MAPSIM
and describe how it is used for generating situated
dialogues.

The MAPL domain description is parsed, ana-
lyzed and turned into perception, action, and com-
munication models for CCP agents. During the sim-

(1) Anne: request R2D2 ’give R2D2 coffee Anne’.
(2) R2D2: acceptrequest ’give R2D2 coffee Anne’.
(3) R2D2: request Anne ’tellval Anne R2D2 pos(coffee)’.
(4) Anne: execute ’tellval Anne R2D2 pos(coffee)’.
(5) R2D2: ackachieved ’tellval Anne R2D2 pos(coffee)’.
(6) ...

Figure 4: The MAPSIM run of Fig. 1 without NL
verbalization.

ulation, MAPSIM maintains and updates the global
world state and it uses the sensor models to com-
pute individual and joint perceptions of agents. The
agents interact with the simulation by sendingcom-
mandsin the form of plain MAPL actions. The
simulator then executes the action, i. e. it checks the
preconditions and applies effects as specified in the
MAPL domain. If the controlling agent of a com-
mand is not identical to the agent who sent it to the
simulator this is interpreted as arequestwhich is not
directly executed but passed on to the corresponding
agent. MAPSIM also accepts specific commands
for acknowledging subgoal acceptance and subgoal
achievement.

Agents do not need to know anything about how
their actions are executed. Thus, they can implement
arbitrary deliberative or reactive methods to deter-
mine their behaviour and their reactions to requests.
We believe that this can make MAPSIM a valuable
evaluation tool even when the DCP and dialogue
strategies investigated differ significantly from CCP.
For example, the simulated dialogues produced by
MAPSIM using different strategies could be evalu-
ated using objective measures such as task success
or dialogue costs from the PARADISE framework
(Walker et al., 1997).

MAPSIM and the CCP agents described in this
paper have been implemented in Python, using state-
of-the-art planning technology as subsolvers.The
generic planner currently used for CCP is a slightly
modified version of Axioms-FF (Thiebaux et al.,
2003). This enables MAPSIM to generate dialogues
between artificial agents very fast.1

The main goal of this work is to show how a
generic multiagent planning algorithm can be used

1For example, during the dialogue of Fig. 1 CCP called the
PLANNER function 13 times with a total planning time less than
half a second on a 1.6 GHz AMD Athlon.



for situated dialogue in natural language, e. g. in
human-robot interaction (HRI). It is therefore im-
portant to investigate the efforts needed for mapping
between the MAPL-based representation used by
CCP agents and natural language. To that end MAP-
SIM includes a verbalization module, called there-
porter agent. The reporter observes all physical and
communicative events in the simulation and verbal-
izes them in English. All dialogues shown through-
out the paper are unaltered outputs of the reporter.
Fig. 4 shows the beginning of the MAPSIM run of
Fig. 1 with reporting turned off.

The reporter is a simple template engine that first
determines an appropriate pattern depending on the
command type currently executed, then recursively
replaces templates with concrete arguments until a
template-free sentence is generated. Base values for
arguments are generated directly from analyzing the
MAPL domain. For example, operator names are
assumed to directly correspond to verbs. Standard
templates can be overridden by domain-specific pat-
terns. However, the only general need for this we
have experienced is the definition of verb comple-
ments. For example, theHouseholddomain de-
fines the complement of“move” as“to the $arg0”
where$arg0 is instantiated with the first argument of
the respective command. Apart from verb comple-
ments, theonly domain-specific template that was
necessary to generate Fig. 1 states that theinter-
rogative (wh-word) for state variablesposition(x)
is “where” . While, compared to “real” natural-
language processing systems, this is a simplistic
approach with obvious limits, the minimal effort
needed to achieve fairly realistic surface generation
is noteworthy and will be exploited in future work.

5 Detailed Analysis of MAPSIM runs

This section provides a detailed analysis of several
CCP runs in MAPSIM. It is important to realize that
none of the sample runs in this paper is based on
just one multiagent plan, but on aseriesof plans,
devised, partly executed and revised several times
according to Alg. 1.

All dialogue in CCP is driven by individual de-
sires, i. e. agents engage in dialogue only if they
need help in satisfying their individual goals. In the
householdscenario (Fig. 1) the necessity for collab-
oration stems from the fact that only R2D2 can move

to the kitchen to get coffee, but only Anne can open
the kitchen door. In thepizzascenario (Fig. 2) Bill
needs the collaboration of his intelligent household
appliances to be able to eat pizza.

As we have already seen, Bill’s initial individ-
ual planning process resulted in the multiagent plan
shown in Fig. 3. In this situation, Alg. 3 can only
choose aphysicalaction for Bill to execute, namely
go home. Note that only theexecutionof this ac-
tion enables Bill to subsequently communicate with
Oven and R2D2 at all. Thus, Bill’s problem can
onlybe solved by a DCP approach that is able to in-
terleave planning, physical execution and dialogue
whenever necessary.

When at home, Bill can (and must) negoti-
ate his plan with the two other agents he wants
to involve. Alg. 3 uses the black-box function
SELECTBESTREQUEST to determine an appropri-
ate temporary subgoalwhose achievement will be
requested from another agent.

The currently usedREQUESTSUBPLAN strategy
works as follows: the agent first determines the
longest possible subplan involving only one agent,
then chooses an action on thefinal level of this plan
as the best request. In other words, a CCP agent
posing a request does not specify details about how
he wants a temporary subgoal to be achieved. In
thehouseholdexample, Anne thus does not request
R2D2 to go to the kitchen and get the coffee there,
but just requests the last action in her multiagent
plan, namely the robot giving her the coffee.

Admittedly, the straightforward verbalization of
this action by the reporting agent using the verb
“give” results in an unnatural dialogue contribution.
Anne’s request would be more appropriately formu-
lated using “bring”, “fetch” or “get”, which unlike
“give” do not presuppose that R2D2 already has the
coffee. This reveals the need to take more of the
subplan into account when verbalizing the request, a
topic we are taking up in further work.

Anne thus leaves it to R2D2 to find its own so-
lution to achieve the TSG. This “lazy” strategy mir-
rors on the dialogue level the idea of the Continual
Planning approach, where an individual CCP agent
postpones the solution of some subproblems to later
phases in the planning-execution-monitoring cycle.

R2D2’s previous plan was to do nothing (which
satisfied his “empty” goal). After adopting the new



TSG, this plan is no longer valid and Alg. 2 triggers
a new planning phase. Since R2D2 does not know
where the coffee is this plan includes an appropri-
ate information-gathering action and postpones de-
tailed planning for getting the coffee until this infor-
mation is known (by means of anassertion(Brenner
and Nebel, 2006)). In our example, the information-
gathering action is a request for information to
Anne (cf. line 3 of Fig. 1). This request is generated
as follows: R2D2’s plan contains the action(tell-val
Anne R2D2 pos coffee), i. e. a speech act to be exe-
cuted by Anne. According to Alg. 3, this action to
be performed by another agent (from R2D2’s point
of view) must be requested first. Line 3 of Fig. 4
shows this request when executed without there-
porter agent. Its verbalization results in R2D2 ask-
ing the question “Where is the coffee, Anne?”.

MAPSIM provides several options for generating
acknowledgments. In the dialogues presented here,
agents provide acknowledgments when they accept
a request (e. g. lines 2 and 7 of Fig. 1) and also when
they realize that a request of theirs has been satisfied
(e. g. lines 5, 9 and 14 of Fig. 1). Note that answers
to questions are acknowledged only briefly, but sat-
isfaction of physical subgoals is acknowledged more
explicitly. While this is not necessarily the best ac-
knowledgment strategy, it shows how the multiagent
plan and the CCP history providecontextas well as
focus(Grosz and Sidner, 1986)) that can easily be
exploited for surface generation and, in the future,
also for interpretation (cf. Sect. 7).

For lack of space, we cannot discuss the rest
of the dialogues in detail. Note, however, how
the agents switch seamlessly between communica-
tive and physical actions whenever necessary. Not
shown by the reports are theperceptionsmade by
the agents during the runs. Nevertheless, they are
important for the dialogue, too, since agents also
reason about their mutual perceptions and thus can
avoid unnecessary verbalizations.

6 Related Work

This work shares many characteristics with previ-
ous approaches modeling dialogue ascollaborative
planning, most notably those based on the Shared-
Plans formalism (Grosz and Sidner, 1990; Grosz and
Kraus, 1996; Lochbaum, 1998). SharedPlans use
much more elaborate mental attitudes than MAPL

and CCP, mainly because CCP agents rely on them
only implicitly – until a violation of their assump-
tions prompts plan adaptation or new dialogue. In
this respect, the commitments made by CCP agents
more resemble thejoint persistent goalsof (Cohen
and Levesque, 1991). Nevertheless, SharedPlans
can be regarded as a “specification” of the kind of
collaboration CCP intends to modelcomputation-
ally.

(Blaylock et al., 2003) note that SharedPlans do
not model the cooperation that occurs duringexecu-
tion. They propose a high-level model of dialogue as
collaborative problem solving(CPS); our approach
can be regarded as an instantiation of that model.
However, our work complements both SharedPlans
and CPS by describinghow knowledge precondi-
tions prompt active sensing and information gather-
ing during situated dialogue.

Distributed Continual Planning has been advo-
cated as a new paradigm for planning in dynamic
multiagent environment (DesJardins et al., 1999).
To the best of our knowledge, ours is the first princi-
pled attempt to apply DCP to dialogue planning and
also the first DCP approach describing deliberative
goal revisionas part of a DCP algorithm.

Collagen (Rich et al., 2001) is a system for build-
ing collaborative interface agents that is based on
(Grosz and Sidner, 1986; Grosz and Sidner, 1990),
which is domain-independent and has been used for
various applications. Collagen’s methods for rep-
resenting the discourse state and doing plan recog-
nition are much more sophisticated than CCP cur-
rently. However, Collagen does not (yet) include a
first-principles planner, but relies on plan libraries
and domain-specific code plug-ins (Rich and Sidner,
2007). It would be interesting to investigate whether
CCP can be integrated with Collagen.

Similarly, the most prominent representative of
the information-state-update approach to dialogue
modeling, GoDiS (Traum and Larsson, 2003),
has complementary rather than competing main
strengths: GoDiS has a more elaborate repertoire of
dialogue moves and can produce more sophisticated
dialogue behavior than CCP and MAPSIM, but it
uses static plans, and it is not clear how it would
combine communication with physical action.



7 Conclusion and Outlook

We have presented a new algorithmic framework
in which situated dialogue is modeled as Contin-
ual Collaborative Planning (CCP). We have shown
how mixed-initiative dialogue that interleaves phys-
ical actions, sensing, and communication between
agents occurs naturally during CCP. As a practical
contribution, we have developed MAPSIM, a soft-
ware tool that automatically generates multiagent
simulations from formal planning domains, thus per-
mitting the evaluation of CCP and other dialogue
strategies on a wide range of applications.

The questions raised in the introduction about
when and why agents switch between planning, act-
ing, and execution have, intuitively, been answered
as follows by CCP: Agents (re)start planning as soon
as their plan becomes obsolete, possibly not be-
cause the world, but because theirgoals changed.
They act whenever they have a valid plan contain-
ing executable physical actions. And they engage
in dialogue whenever they want others to share sub-
goals or are requested to do this themselves. Since
situated communication may have (physical) pre-
conditions that must be satisfied first (e. g. being
in the same room, having the other agent’s atten-
tion/engagement, etc.) CCP explains how the need
for dialogue may also trigger additional planning
and acting.

From simulation to human-robot interaction
The work presented in this paper provides a starting
point for developing agents, e. g. robots, that can en-
gage in situated dialogue with humans. Indeed, we
are currently implementing CCP on a robotic system
in the CoSy project. To that end, we are extending
our approach in the following respects: (1) To allow
for imperfect communication, we need to improve
the handling of acknowledgments to include posi-
tive as well as negative feedback and clarifications.
(2) To support the full range of plan-negotiation be-
tween dialogue participants, we need to allow agents
to reject requests and accept rejections from others.
This will enable us to handle situations with, e. g.,
conflicting goals, discrepancies in beliefs and exe-
cution failures.

Doing this amounts to refining and extending the
repertoire of speech acts. Since the planning tech-
nology underlying CCP is known to scale very well

(Thiebaux et al., 2003), we expect our dialogue ap-
proach to also scale up well to a larger repertoire of
speech acts, more complex interactions and higher
numbers of interacting parties.

We are also investigating how to better expose the
purpose that an individual dialogue move serves in
achieving an agent’s overall goals, e. g. by deriving
an explicitdialogue planduring CCP. Such a plan, in
combination with the current state of the CCP pro-
cess, will provide rich context information to the lin-
guistic components of our robot, e. g. for the task of
utterance interpretation and contextually appropriate
surface generation.
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Albert-Ludwigs-Universiẗat, Institut f̈ur Informatik, Freiburg, Germany.

H. H. Clark and C. R. Marshall. 1981. Definite reference and mutual knowledge.
In Elements of discourse understanding. Cambridge University Press.

P. Cohen and H. Levesque. 1991. Teamwork.Noûs, 25(4).
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